【Python数据分析】快速掌握NumPy数组计算

Python因其简洁性和丰富的库在数据科学领域广泛应用。NumPy作为核心计算库,提供高效的ndarray数据结构和并行化运算能力,加速数据分析过程。NumPy利用BLAS进行高度优化,支持向量化操作,是Python科学计算的基础。
摘要由CSDN通过智能技术生成

自 1991 年问世以来,Python成为当下最火的编程语言之一。

由于Python语言的简洁性、易读性以及可扩展性,Python在DevOps、数据科学、Web 开发、信息安全等各个领域当中都有重要的地位。

在国内,越来越多的数据分析工作需要用到Python语言。

在这里插入图片描述

对于数据分析师从业者而言,经常需要从事数据库操作、报告撰写、数据可视化、数据挖掘的工作。

如果不写代码,这些工作会带来重复机械的操作与庞大的工作量,分析效率很低。

但如果你会用 Python 编写代码,就能享受到更高的操作自由度,轻松解决这些工作内容。

在这里插入图片描述

用 Python做数据分析,理由非常充分:就应用场景来看,使用Python时,能做到分析过程可控,复用性强;且Python语言功能完善,能够轻松集成 C、C++以及 Fortran 代码,且与AI紧密相连。

更重要的是,Python拥有强大的第三方库。

Python 是个生态完善且开源软件包很多的高级动态编程语言。在数据分析过程中,可以通过调用不同的包来完成相应的工作。

其中,Numpy是数据分析工作中不可或缺的核心计算库之一,是 Python 科学计算的基础包。

在这里插入图片描述

NumPy到底好在哪?快来一起看看吧。

01 NumPy的数组内存块风格

在NumPy当中,一个核心就是ndarray。

那么这个称之为数组的东西到底跟原本的Python列表有什么不同呢?

请看一张图:

在这里插入图片描述

从图中我们看出来NumPy其实在存储数据的时候,数据与数据的地址都是连续的,这样就给我们操作带来了好处,处理速度快。在计算机内存里是存储在一个连续空间上的,而对于这个连续空间,我们如果创建 Array 的方式不同,在这个连续空间上的排列顺序也有不同。

02 NumPy的并行化运算

NumPy的第二个特点就是,支持并行化运算,也叫向量化运算。

NumPy的许多函数不仅是用C实现了,还使用了BLAS(一般Windows下link到MKL的,下link到OpenBLAS)。

基本上那些BLAS实现在每种操作上都进行了高度优化,例如使用AVX向量指令集,甚至能比你自己用C实现快上许多,更不要说和用Python实现的速度比较。

也就是说,NumPy底层使用BLAS做向量,矩阵运算,很容易使用multi-threading或者vectorization来加速。

在这里插入图片描述

NumPy重在数值计算,是大部分Python科学计算库的基础库,多用于在大型、多维数组上执行数值运算。

补充了python数据结构中不能处理大型数据结构的缺陷。

最后

如果你对Python技术比较感兴趣,也想学习数据分析,给自己充下电。这里有一份Python全套学习资料可以 免费分享 ,包括学习路线、软件、源码、视频、面试题等等,都是我自己学习时整理的,整理不易,请多多点赞分享哦~

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、Python学习软件

工欲善其事,必先利其器。学习Python常用的开发软件都在这里了!
在这里插入图片描述

三、Python入门学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~在这里插入图片描述

四、Python练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述

五、Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。这份资料也包含在内的哈~在这里插入图片描述

六、Python面试资料

我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

七、资料领取

上述完整版Python全套学习资料已经上传CSDN官方,需要的小伙伴可自行微信扫描下方CSDN官方认证二维码输入“领取资料”免费领取!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值