(Matlab实现)CNN卷积神经网络图片分类

  目录

摘要:

1.卷积神经网络介绍:

2.卷积神经网络(CNN)构建与训练:

2.1 CNN的输入图像

2.2 构建CNN网络

2.3 训练CNN网络

3.卷积神经网络(CNN)的实际分类测试:

4.实验代码:


摘要:

使用Matlab自带的深度学习工具箱构建卷积神经网络(CNN)进行图片分类,以识别并分类手写数字为例。首先将大量的图片数据导入;然后给不同种类的图片打上对应的分类的标签,划分为训练集和测试集;构建CNN网络其中包括3层2维卷积和3个池化层,全连接层及分类层;调整好输入输出格式对CNN进行训练及测试;最后结果表明CNN可以有效的对手写数字图像进行分类。

1.卷积神经网络介绍:

卷积神经网络  (Convolutional  Neural  Network,CNN) 这一概念最早由 Yann Lecun 于 20 世纪 80 年代提出,是受到生物神经学中感受野的启发而发展起来的一种前馈神经网络结构模型。其作为一种有监督深度学习算法,端到端的数据处理模式,由于特征提取阶段不需要人工选择,而被广泛应用在各个领域的设备状态监测中。

2.卷积神经网络(CNN)构建与训练:

2.1 CNN的输入图像

本文CNN的输入图像如下:为1-9的手写数字,对应分类标签为1-9。

2.2 构建CNN网络

本文构建的CNN结构如下图所示:

  1. 图像输入层:用于指定图像大小,在本例中为 28×28×1。这些数字对应于高度、宽度和通道大小。数字数据由灰度图像组成,因此通道大小(颜色通道)为 1。对于彩色图像,通道大小为 3,对应于 RGB 值。
  2. 卷积层:在三层卷积层中,第一层有8个3*3的卷积核,第二层有16个3*3的卷积核,第三层有32个3*3的卷积核。卷积层逐渐加深,不断提取输入图像的特征。
  3. 批量归一化层批量归一化层对网络中的激活值和梯度传播进行归一化,使网络训练成为更简单的优化问题。在卷积层和非线性部分(例如 ReLU 层)之间使用批量归一化层,来加速网络训练并降低对网络初始化的敏感度。
  4. ReLU 层:批量归一化层后接一个非线性激活函数。最常见的激活函数是修正线性单元 (ReLU)。使用 reluLayer 创建 ReLU 层。
  5. 最大池化层:卷积层(带激活函数)有时会后跟下采样操作,以减小特征图的空间大小并删除冗余空间信息。通过下采样可以增加更深卷积层中的滤波器数量,而不会增加每层所需的计算量。下采样的一种方法是使用最大池化,在此示例中,该矩形区域的大小是2
  6. 全连接层:卷积层和下采样层后跟一个或多个全连接层。顾名思义,全连接层中的神经元将连接到前一层中的所有神经元。该层将先前层在图像中学习的所有特征组合在一起,以识别较大的模式。最后一个全连接层将特征组合在一起来对图像进行分类。因此,最后一个全连接层中的 OutputSize 参数等于目标数据中的类数。
  7. softmax 层: softmax 激活函数对全连接层的输出进行归一化。
  8. 分类层:最终层是分类层。该层使用 softmax 激活函数针对每个输入返回的概率,将输入分配到其中一个互斥类并计算损失。

2.3 训练CNN网络

定义网络结构体后,指定训练选项。使用具有动量的随机梯度下降 (SGDM) 训练网络,初始学习率为 0.01。将最大训练轮数设置为 4。将数据分为训练集和测试集,对构建好的CNN进行训练,训练过程中的误差曲线如下:

3.卷积神经网络(CNN)的实际分类测试:

使用经过训练的网络预测验证数据的标签,并计算最终验证准确度。准确度是网络预测正确的标签的比例。在本例中,超过 99% 的预测标签与验证集的真实标签相匹配。

4.实验代码:

部分代码:

clc;
clear;
close all;
%% 导入数据
digitDatasetPath = fullfile(matlabroot,'toolbox','nnet','nndemos', ...
    'nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true,'LabelSource','foldernames');
% 图像展示
figure;
perm = randperm(10000,20);
for i = 1:20
    subplot(4,5,i);
    imshow(imds.Files{perm(i)});
end
%% 数据整理与归一化
labelCount = countEachLabel(imds);% 查看各类图片的数量及对应的分类标签
img = readimage(imds,1); % 设置输入图像的大小
fprintf('输入图像的大小为:');
disp(size(img));
% 指定训练集和测试集合
numTrainFiles = 750; % 指定训练集总共包含750个图像
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize'); % 将图片与对应的标签分开,即分成输入与输出
%% 网络定义以及训练
[layers,options] = Net_Built(imdsValidation);
analyzeNetwork(layers);
net = trainNetwork(imdsTrain,layers,options);
%% 网络分类预测
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
accuracy = sum(YPred == YValidation)/numel(YValidation);
fprintf('分类测试的正确率为:');
disp(accuracy);
plot(YPred);
hold on
plot(YValidation);
hold off
legend('预测分类','实际分类');
title('CNN实际测试情况');
xlabel('样本');
ylabel('分类数值');

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 以下是一个简单的 Matlab 深度学习卷积神经网络图片分类预测裂缝走向的代码示例: ```matlab % 加载数据集 imds = imageDatastore('path/to/images', ... 'IncludeSubfolders',true,'LabelSource','foldernames'); % 划分训练集和测试集 [imdsTrain,imdsTest] = splitEachLabel(imds,0.7,'randomized'); % 定义卷积神经网络 layers = [ imageInputLayer([64 64 3]) convolution2dLayer(3,16,'Padding','same') batchNormalizationLayer reluLayer maxPooling2dLayer(2,'Stride',2) convolution2dLayer(3,32,'Padding','same') batchNormalizationLayer reluLayer maxPooling2dLayer(2,'Stride',2) convolution2dLayer(3,64,'Padding','same') batchNormalizationLayer reluLayer fullyConnectedLayer(2) softmaxLayer classificationLayer]; % 定义训练选项 options = trainingOptions('adam', ... 'MaxEpochs',10, ... 'MiniBatchSize',32, ... 'ValidationData',imdsTest, ... 'ValidationFrequency',30, ... 'Verbose',false, ... 'Plots','training-progress'); % 训练卷积神经网络 net = trainNetwork(imdsTrain,layers,options); % 测试卷积神经网络 YPred = classify(net,imdsTest); YTest = imdsTest.Labels; accuracy = sum(YPred == YTest)/numel(YTest); % 预测新数据 im = imread('path/to/new/image.jpg'); im = imresize(im,[64 64]); label = classify(net,im); ``` 请注意,这只是一个简单的示例代码,您需要根据您的数据集和任务进行相应的修改和调整。 ### 回答2: 在MATLAB中,可以使用深度学习工具箱 (Deep Learning Toolbox) 来训练卷积神经网络 (Convolutional Neural Network, CNN) 进行图片分类预测裂缝走向。 首先,需要准备一批裂缝图片的数据集,可以包含正常状态和不同走向的裂缝图片。数据集应该被分成训练集和测试集两部分。 接下来,可以使用MATLAB的图像预处理工具来对图像进行预处理步骤,如调整大小、转换为灰度图等。 然后,可以定义并训练卷积神经网络模型。可以使用MATLAB的命令行界面或创建一个.m文件来定义模型结构。在模型中,可以包含卷积层、池化层、全连接层等。设置好模型结构后,可以调用训练函数 (trainNetwork) 来进行网络训练。训练函数会根据输入的数据集和训练参数来不断调整模型参数,以使其能够做出准确的裂缝走向预测。训练过程可能需要一定的时间,具体时间取决于数据集的大小和模型复杂度。 在模型训练完成后,可以使用测试集数据来评估模型的性能。可以调用评估函数 (classify) 来进行分类预测,并根据预测结果与真实标签进行比较,计算准确率、召回率等性能指标。 最后,可以使用训练好的模型来进行裂缝走向预测。可以将新的裂缝图片输入到训练好的模型中,并使用预测函数 (predict) 来得到预测结果。 需要指出的是,网络结构的设计、训练参数的选择以及数据集的质量都会影响到最终的预测结果。因此,在实际应用中,需要不断调整和优化模型和训练参数,以获得更好的预测性能。 ### 回答3: 要使用MATLAB进行深度学习卷积神经网络图片分类预测裂缝走向,需要按照以下步骤进行: 1. 数据准备:首先,需要准备用于训练和测试的图像数据集。这些图像应包含不同类型的裂缝样本和非裂缝样本。确保每个图像都有相应的标签,指示它是属于裂缝还是非裂缝。将数据集划分为训练集和测试集。 2. 神经网络模型设计:使用MATLAB的深度学习工具箱中的卷积神经网络设计模型。可以选择使用预训练模型,如AlexNet、VGG或ResNet,也可以从头开始设计自己的模型。注意模型应具有适当数量的卷积层、池化层和全连接层,以及适当的激活函数和损失函数。 3. 数据预处理:使用MATLAB进行数据预处理,包括图像增强、归一化和数据增强等。这些步骤可以提高模型的性能和鲁棒性。 4. 模型训练:使用准备好的训练集对卷积神经网络进行训练。在每个训练周期中,通过前向传播和反向传播调整权重和偏差,以最小化损失函数。可以使用MATLAB的训练选项来指定训练参数,例如学习率、迭代次数和批处理大小。 5. 模型评估:使用测试集评估训练好的模型的性能。通过计算预测精度、召回率和F1分数等指标来衡量模型的性能。可以使用MATLAB的深度学习工具箱中的函数来计算这些指标。 6. 模型预测:使用训练好的模型对新的图像进行预测。将新图像输入到模型中,通过前向传播计算输出,并将其解释为裂缝走向的类别概率。可以选择设定一个阈值,将概率转为二进制标签(裂缝或非裂缝)。 以上是使用MATLAB进行深度学习卷积神经网络图片分类预测裂缝走向的大致步骤。在实际操作中,可能需要进行参数调整、优化和模型改进以获得更好的预测结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值