基于大模型 Gemma-7B 和 llama_index,轻松实现 NL2SQL

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学.

针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。

汇总合集:《大模型面试宝典》(2024版) 发布!


本文将会介绍Text to SQL相关的概念,如何使用大模型SFT实现Text to SQL,最后介绍Text to SQL的应用场景。

引言

Text to SQL,又被称为Natural Language to SQL(简称NL2SQL),指的是将自然语言描述转化为数据库的SQL查询语句。由于数据库在我们日常工作生活中随处可见,因此Text to SQL技术也获得业界和学术界的不少研究与关注。

举个例子,比如在问题“What’s the population of New York city?”,那么我们在相关的某张表格(比如city表)中,对应的SQL语句应当为“SELECT POPULATION FROM city WHERE name = “New York””,此时数据库应当能执行该SQL语句。

常见的Text to SQL数据集有WIKISQL, Spider, ATIS, GeoQuery。以往已经有不少的NLP或者机器学习相关的技术涉及Text to SQL,但效果都比较一般。

接下来,我们将会介绍如何使用大模型SFT技术来实现Text to SQL,看看大模型的表现。

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了大模型算法岗技术与面试交流群, 想要交流、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:CSDN + 技术交流

SFT

我们使用HuggingFace上的b-mc2/sql-create-context数据集,该数据集只有78,577条训练数据,无测试集数据,字段为answer, question, context,其中answer为最终产生的SQL语句,question为用户问题,context为数据库表格创建语句。

比如其中在一个样本中,question为How many heads of the departments are older than 56 ?, context为CREATE TABLE head (age INTEGER), answer为SELECT COUNT(*) FROM head WHERE age > 56

我们使用谷歌开源的Gemma-7B模型对改数据集进行指令微调。以上述样本为例,对应的指令格式为:

\nBelow is an instruction that describes a task.Write a response that appropriately completes the request.\n### Instruction: How many heads of the departments are older than 56 ?\n### Database Schema:\nCREATE TABLE head (age INTEGER)\n### Response:\nSELECT COUNT(*) FROM head WHERE age > 56\n<eos>\n

其中为Gemma-7B模型的结束标志符。

使用trl可以很方面地对Gemma-7B模型进行SFT,代码如下:

from datasets import load_dataset
import torch
from peft import LoraConfig
from trl import SFTTrainer
from transformers import TrainingArguments
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

# Hugging Face model id
model_id = "./models/gemma-7b"

# BitsAndBytesConfig int-4 config
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
)

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    quantization_config=bnb_config
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.padding_side = 'right'

train_dataset = load_dataset("json", data_files="sql-create-context.json")['train']
print(train_dataset[0])
print(f"train size: {len(train_dataset)}")

# LoRA config based on QLoRA paper & Sebastian Raschka experiment
peft_config = LoraConfig(
        lora_alpha=16,
        lora_dropout=0.05,
        r=64,
        bias="none",
        target_modules=["q_proj", "k_proj", "v_proj", "o_proj","gate_proj"],
        task_type="CAUSAL_LM", 
)

args = TrainingArguments(
    output_dir="output",                    # directory to save and repository id
    num_train_epochs=2,                     # number of training epochs
    per_device_train_batch_size=8,          # batch size per device during training
    gradient_accumulation_steps=4,          # number of steps before performing a backward/update pass
    gradient_checkpointing=True,            # use gradient checkpointing to save memory
    optim="paged_adamw_8bit",              
    save_strategy="epoch",
    logging_strategy="steps",
    logging_steps=10,                       # log every 10 steps
    bf16=True,                              # use bfloat16 precision
    learning_rate=1e-4,                     # learning rate, based on QLoRA paper
    max_grad_norm=0.3,                      # max gradient norm based on QLoRA paper
    warmup_ratio=0.1,                      # warmup ratio based on QLoRA paper
    lr_scheduler_type="constant",           # use constant learning rate scheduler
    push_to_hub=False,                       # push model to hub
    report_to="tensorboard",                # report metrics to tensorboard
)

max_seq_length = 1024

trainer = SFTTrainer(
    model=model,
    args=args,
    train_dataset=train_dataset,
    peft_config=peft_config,
    max_seq_length=max_seq_length,
    tokenizer=tokenizer,
    packing=False,
    dataset_text_field="text"
)


trainer.train()
trainer.save_model()

训练完后,我们使用下面的脚本进行新样本的预测,代码如下:

from transformers import AutoModelForCausalLM, AutoTokenizer

peft_model_id = "./output/checkpoint-4911"
model = AutoModelForCausalLM.from_pretrained(peft_model_id, device_map="cuda")
tokenizer = AutoTokenizer.from_pretrained("./models/gemma-7b")


while True:
    question = input("enter a question: ")
    context = input("enter database schema: ")
    input_text = f"""
Below is an instruction that describes a task.Write a response that appropriately completes the request.
### Instruction: {question}
### Database Schema:
{context}
### Response:
"""
    encoding = tokenizer(input_text, return_tensors="pt").to("cuda")
    outputs = model.generate(**encoding, max_new_tokens=100, temperature=0.1, do_sample=True)
    generated_ids = outputs[:, encoding.input_ids.shape[1]:]
    generated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
    print("Instruction: ", input_text)
    print("SQL: ", generated_texts[0].strip())

为了验证改模型的效果,我们在新样本进行测试。

  • 例子1

直接从SQL测验网站进行测试,第一个例子为:

图片

测试题例子1

模型生成的SQL语句为:SELECT * FROM CITY WHERE COUNTRYCODE = "USA" AND POPULATION > 100000,成功运行!

图片

生成的SQL语句执行成功1

  • 例子2

第二个例子为:

图片

生成的SQL语句为SELECT CITY, STATE FROM STATION,也能执行成功!

  • 例子3

上述的两个较为简单,我们再来看个复杂点的例子。第三个例子为:

图片

生成的SQL语句为SELECT CITY FROM STATION WHERE SUBSTR(CITY, -1) NOT IN ('A', 'E', 'I', 'O', 'U') GROUP BY CITY,竟然能执行成功!

  • 例子4

第四例子为两个表格,需要对表格进行join,如下:

图片

生成的SQL语句为SELECT T1.NAME FROM CITY AS T1 JOIN COUNTRY AS T2 ON T1.COUNTRYCODE = T2.CODE WHERE T2.CONTINENT = 'Africa',竟然能执行成功!

以上只是找了几个比较好的例子,实际上还是有很多生成的SQL语句无法通过测试的。

在实际的Text to SQL应用场景中,需要调整system prompt,对指令进行更加详细的描述,比较加入表格、字段描述。同时,还需要质量更高、更贴近业务场景的训练数据,以及合适的大模型等,需要保证生成的SQL语句的可执行准确率。

表格问答应用

我们举个例子,来说明Text to SQL和大模型结合起来使用,在表格问答场景中能有更好的表现。

Mysql中的users表的描述:

+-------------+--------------+------+-----+---------+----------------+
| Field       | Type         | Null | Key | Default | Extra          |
+-------------+--------------+------+-----+---------+----------------+
| id          | int          | NO   | PRI | NULL    | auto_increment |
| name        | varchar(256) | NO   |     | NULL    |                |
| age         | int          | YES  |     | NULL    |                |
| place       | varchar(256) | NO   |     | NULL    |                |
| insert_time | datetime     | YES  |     | NULL    |                |
+-------------+--------------+------+-----+---------+----------------+

表格中的所有数据:

+----+---------------+------+-------+---------------------+
| id | name          | age  | place | insert_time         |
+----+---------------+------+-------+---------------------+
|  1 | Jack          |   25 | USA   | 2023-12-23 23:48:48 |
|  2 | Green         |   26 | UK    | 2023-12-23 23:48:58 |
|  3 | Alex          |   31 | GER   | 2023-12-23 23:49:03 |
|  4 | Chen          |   52 | CHN   | 2023-12-23 23:49:08 |
|  5 | Zhang         |   42 | CHN   | 2023-12-23 23:49:13 |
|  6 | ElasticSearch |   12 | USA   | 2023-12-24 00:41:20 |
|  7 | Kibana        |   24 | USA   | 2023-12-24 00:41:37 |
|  8 | Logstash      |   36 | USA   | 2023-12-24 00:42:41 |
+----+---------------+------+-------+---------------------+

我们考虑以下四个问题:

  • How old is Chen?

  • Who is the oldest person and its age and place?

  • How many persons come from USA and what are their names and age?

  • Return the top 5 oldest person in descending order with their name and age.

  • what are the names that begins with J or E?

使用LlamaIndex工具中的Text-to-SQL QueryEngine对上述四个问题进行问答。代码如下:

# -*- coding: utf-8 -*-
# @file: nl2sql_test.py
# llama-index == 0.9.30
# SQLAlchemy==2.0.20
# PyMySQL == 1.1.0
from sqlalchemy import create_engine, text

from llama_index import SQLDatabase, ServiceContext
from llama_index.llms import OpenAI
from llama_index.indices.struct_store.sql_query import NLSQLTableQueryEngine

from llama_index.indices.struct_store.sql_query import (
    SQLTableRetrieverQueryEngine,
)
from llama_index.objects import (
    SQLTableNodeMapping,
    ObjectIndex,
    SQLTableSchema,
)
from llama_index import VectorStoreIndex
from llama_index.retrievers import NLSQLRetriever
from llama_index.query_engine import RetrieverQueryEngine

llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo")
service_context = ServiceContext.from_defaults(llm=llm)

engine = create_engine("mysql+pymysql://root:root@localhost:3306/orm_test")
sql_database = SQLDatabase(engine, include_tables=["users"])

# text-to-sql query engine, simple example
query_engine = NLSQLTableQueryEngine(
    sql_database=sql_database,
    tables=["users"]
)
query_str = "How old is Chen?"
response = query_engine.query(query_str)
print(response)
print('*' * 30, end='\n\n')

# total size of table schema overflows context window size
# then use SQLTableNodeMapping
# set Logging to DEBUG for more detailed outputs
table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = [
    (SQLTableSchema(table_name="users"))
]  # add a SQLTableSchema for each table

obj_index = ObjectIndex.from_objects(
    table_schema_objs,
    table_node_mapping,
    VectorStoreIndex,
)
query_engine = SQLTableRetrieverQueryEngine(
    sql_database, obj_index.as_retriever(similarity_top_k=1)
)

response = query_engine.query("Who is the oldest person and its age and place?")
print(response)
print('*' * 30, end='\n\n')

response = query_engine.query("How many persons come from USA and what are their names and age?")
print(response.metadata)
print(response.metadata['result'])
print(response)
print('*' * 30, end='\n\n')

# manually set context text
city_stats_text = (
    "This table gives information regarding the persons and their age and place.\n"
    "The insert time means when the record was inserted into this table."
)

table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = [
    (SQLTableSchema(table_name="users", context_str=city_stats_text))
]

# text-to-sql retriever
# SQL Retriever
# default retrieval (return_raw=True)
nl_sql_retriever = NLSQLRetriever(
    sql_database, tables=["users"], return_raw=True
)

results = nl_sql_retriever.retrieve(
    "Return the top 5 oldest person in descending order with their name and age."
)

for n in results:
    print(n)
print('*' * 30, end='\n\n')

# default retrieval (return_raw=False)
nl_sql_retriever = NLSQLRetriever(
    sql_database, tables=["users"], return_raw=False
)
results = nl_sql_retriever.retrieve(
    "Return the top 5 oldest person in descending order with their name and age."
)

# NOTE: all the content is in the metadata
for n in results:
    print(n, n.metadata)
print('*' * 30, end='\n\n')

# compose SQL Retriever with RetrieverQueryEngine to synthesize a response
nl_sql_retriever = NLSQLRetriever(
    sql_database, tables=["users"], return_raw=True
)
query_engine = RetrieverQueryEngine.from_args(nl_sql_retriever)
queries = ["Return the top 5 oldest person in descending order with their name and age.",
           "what are the names that begins with J or E?"]
for query in queries:
    response = query_engine.query(query)
    print(response)
print('*' * 30, end='\n\n')

对应的输出答案为(中间有部分省略):

Chen is 52 years old.
******************************
The oldest person is Chen, who is 52 years old and is from China.
******************************
There are four persons from the USA in the database. Their names are Jack, ElasticSearch, Kibana, and Logstash, and their ages are 25, 12, 24, and 36 respectively.
******************************
The top 5 oldest people in descending order with their names and ages are:
1. Chen, 52
2. Zhang, 42
3. Logstash, 36
4. Alex, 31
5. Green, 26
******************************
The names that begin with J or E are ElasticSearch and Jack.

看来Text to SQL对于表格问答场景有很大帮助。

补充

对于上述表格问答应用中的5个问题,我们使用Gemma-7B微调的Text to SQL模型进行回答,生成的SQL语句如下:

  • SELECT age FROM users WHERE place = ‘Chen’

  • SELECT id, name, age, place FROM users ORDER BY age DESC LIMIT 1

  • SELECT id, name, age FROM users WHERE place = ‘USA’ ORDER BY insert_time

  • SELECT id, name, age FROM users ORDER BY age DESC LIMIT 5

  • SELECT name FROM users WHERE name LIKE ‘J%’ OR name LIKE ‘E%’

将它们在MySQL中进行执行,结果如下:

图片

MySQL执行结果

所有的语句都可以执行,但第一条语句是错误的,不过只需将place改成name即可执行成功。

有了上述的SQL执行结果,我们将上述表格问答中的第三个例子进行Prompt Engineer,如下:

<The background information follows>:

table `users` in Mysql:

+-------------+--------------+------+-----+---------+----------------+
| Field       | Type         | Null | Key | Default | Extra          |
+-------------+--------------+------+-----+---------+----------------+
| id          | int          | NO   | PRI | NULL    | auto_increment |
| name        | varchar(256) | NO   |     | NULL    |                |
| age         | int          | YES  |     | NULL    |                |
| place       | varchar(256) | NO   |     | NULL    |                |
| insert_time | datetime     | YES  |     | NULL    |                |
+-------------+--------------+------+-----+---------+----------------+

SQL execution result:

mysql> SELECT id, name, age FROM users WHERE place = 'USA' ORDER BY insert_time;

+----+---------------+------+
| id | name          | age  |
+----+---------------+------+
|  1 | Jack          |   25 |
|  6 | ElasticSearch |   12 |
|  7 | Kibana        |   24 |
|  8 | Logstash      |   36 |
+----+---------------+------+

Based on the background information, Answer the question: How many persons come from USA and what are their names and age?

看看GPT3.5模型的回答:

图片

回答正确!

以上仅仅是对LlamaIndex中使用Text to SQL技术的一种可能的实现方式的思考,故在此作为补充。

<think>嗯,用户想在Debian 12系统上用Docker部署Xinference,使用自定义的CPU模型模型是HuggingFace下载的gemma-3-27b-it-abliterated.q4_k_m.gguf。首先,我需要回忆一下Xinference的基本安装步骤,特别是Docker方面的。然后,用户用的是CPU,可能需要调整配置,避免GPU相关的设置。接下来,模型路径的问题,如何挂载到容器里,可能需要Docker的-v参数。还有,Xinference是否支持GGUF格式的模型呢?记得Xinference主要支持HuggingFace的模型,但GGUF是llama.cpp的格式,可能需要确认兼容性。可能需要用Xinference的--model-format参数或者类似选项。另外,用户提供的模型路径是/root/models,需要确保容器内能访问这个路径,可能需要权限设置。然后,运行Docker命令的时候,端口映射也要注意,默认可能是9997。还有,启动模型的时候,可能需要指定正确的模型名称参数,比如CPU的数量,内存分配。用户的硬件是32G RAM,模型27B参数,q4量化,应该可以运行,但要确保内存足够。可能需要调整max_model_size或者类似参数。另外,检查Xinference的文档是否有关于CPU部署自定义模型的说明,可能需要一些环境变量或者启动参数。最后,测试是否部署成功,用curl或者API调用验证。可能遇到的错误包括模型加载失败,路径问题,或者格式不支持,需要逐步排查。</think>我将以步骤形式指导你在Debian 12系统上使用Docker部署Xinference并加载自定义模型: 1. **环境准备** ```bash # 安装Docker sudo apt-get update && sudo apt-get install docker.io sudo systemctl enable --now docker # 创建模型目录(已存在可跳过) mkdir -p /root/models ``` 2. **拉取Xinference镜像** ```bash docker pull xprobe/xinference:latest ``` 3. **启动Docker容器**(关键配置) ```bash docker run -d --name xinference_cpu \ -p 9997:9997 \ -v /root/models:/root/models \ -e XINFERENCE_HOME=/root/.xinference \ xprobe/xinference:latest \ xinference-local \ --host 0.0.0.0 \ --port 9997 \ --log-file /root/.xinference/xinference.log ``` 4. **注册自定义模型**(重要步骤) ```bash # 进入容器 docker exec -it xinference_cpu bash # 在容器内执行注册命令 xinference register --file-format gguf \ --model-type llama \ --model-name gemma-3-27b-it \ --model-file /root/models/gemma-3-27b-it-abliterated.q4_k_m.gguf ``` 5. **启动模型服务** ```bash # 在容器内执行 xinference launch --model-name "gemma-3-27b-it" \ --model-format gguf \ --n-gpu 0 \ --cpu 4 \ --max-tokens 4096 ``` **关键参数说明**: - `--n-gpu 0`:强制使用CPU推理 - `--cpu 4`:分配4个CPU核心 - `--max-tokens 4096`:根据32G内存调整的token限制 6. **验证部署** ```bash curl http://localhost:9997/v1/models ``` **可能出现的问题及解决方案**: 1. **模型加载失败**: - 确认GGUF文件完整性:`md5sum /root/models/gemma-3-27b-it-abliterated.q4_k_m.gguf` - 检查模型注册时的`--model-type`是否正确 2. **内存不足**: ```bash # 调整容器内存限制 docker update --memory 30G --memory-swap 30G xinference_cpu ``` 3. **性能优化**: ```bash # 在启动命令添加CPU优化参数 xinference launch ... --numa-allocator ``` **最终API调用示例**: ```python from xinference.client import Client client = Client("http://localhost:9997") model = client.get_model("gemma-3-27b-it") print(model.generate("如何做蛋炒饭?")) ``` 建议将模型加载命令写入启动脚本,并监控系统资源使用: ```bash watch -n 1 "free -h && grep -E '^(Model|Cache)' /proc/meminfo" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值