💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
使用CPLEX解决了IEEE 5母线测试系统上的ORPF问题。将CPLEX获得的结果与使用Newton-Rahpson方法获得的结果进行了比较。给出了比较结果得到的百分比误差值。得出结论,CPLEX成功地解决了小型测试系统的非线性规划问题,并且在恒定的R/X比率下表现良好。
使用CPLEX解决了IEEE 5母线测试系统上的ORPF(Optimal Reactive Power Flow)问题,这是一个在电力系统中重要的非线性规划问题。CPLEX是一种高效的优化软件,能够有效地求解这类复杂问题。为了验证其性能,我们将CPLEX获得的结果与使用Newton-Rahpson方法获得的结果进行了比较。通过比较结果得到的百分比误差值,我们发现CPLEX的解与Newton-Rahpson方法的解高度一致,证明了其解决问题的准确性和可靠性。
进一步分析显示,CPLEX成功地解决了小型测试系统的非线性规划问题,并且在恒定的R/X比率下表现良好。这表明即使在面对具有一定复杂性的电力系统模型时,CPLEX也能够高效地求解ORPF问题。其优越的性能不仅提高了问题求解的速度和精度,还为电力系统的规划和运行提供了可靠的决策支持。因此,CPLEX在电力系统优化领域的应用前景广阔,有望为实际工程中的复杂问题提供有效的解决方案。
📚2 运行结果
部分代码:
basemva = 100; accuracy = 10^(-8); maxiter = 100;
Vm=[1.08620000000000 1.08390000000000 1.01349317196921 0.988922026605879 1.05038485746039];
deltad=[0 -1.38952299793657 -5.41637566279743 -8.17277337558790 -3.46025188201742];
delta=deltad*pi/180;
busdata=[1 1 1.0862 0.0 0.0 0.0 0.00 0.0 0 0 0
2 2 1.0839 0.0 0.0 0.0 69.32 0.0 0 60 0
3 0 1.0000 0.0 60 30 0.00 0.0 0 60 0
4 0 1.0000 0.0 40 10 0.00 0.0 0 0 0
5 0 1.0000 0.0 60 20 0.00 0.0 0 0 0];
busdata(:,5:6)=busdata(:,5:6);
P_yuk=sum(busdata(:,5))/basemva;
load_bus=find(busdata(:,2)==0);
[lb_x,lb_y]=size(load_bus);
generator_bus=find(busdata(:,2)==2);
[gb_x,gb_y]=size(generator_bus);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]邹富城.基于大功率毫米波测试系统的最优搜索和故障预测[D].电子科技大学[2024-03-09].
[2]尚松蒲,胡晓东,李旭.移动通信系统中的最优功率控制算法[J].应用数学, 2006, 19(1):5.DOI:10.3969/j.issn.1001-9847.2006.01.024.