二阶锥松弛在配电网最优潮流计算中的应用(IEEE33节点配电网最优潮流算例matlab程序)(yalmip+cplex)

该文介绍了二阶锥规划在解决配电网最优潮流问题中的应用,通过建立非凸非线性模型并进行二阶锥松弛,转化为可求解的二阶锥规划模型。在IEEE33节点系统中进行算例分析,验证了方法的有效性,涉及到分布式电源、无功补偿装置的约束处理和电压约束等关键因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二阶锥规划在配电网最优潮流计算中的应用IEEE33节点配电网最优潮流算例matlab程序(yalmip+cplex)

参考文献:二阶锥规划在配电网最优潮流计算中的应用
最优潮流计算是电网规划、优化运行的重要基础。首先建立了配电网全天有功损耗最小化的最优潮流计算模型;其次结合辐射型配电网潮流特点建立支路潮流约束,并考虑配电网中的可控单元,包括分布式电源和离散、连续无功补偿装置,建立其出力约束,该模型为非凸非线性模型;然后通过二阶锥
松弛将该模型转化为包含整数变量的二阶锥规划模型,采用YALMIP建模工具包以及cplex商业求解器对所建模型进行求解;最后通过对IEEE 33节点设计算例,验证了所用方法的有效性。
关键词:二阶锥规划;最优潮流;配电网;有功损耗

配电网最优潮流 Optimal Power Flow, OPF) 问题是指在满足一定约束条件的情况下,通过控制配电网中的可控变量,使配电网达到优化运行的目的。由于OPF问题约束条件的特点,导致其为难以求解的非凸规划问题。目前OPF求解方法主要分为经典数学规划算法和智能优化算法两种。

近年来,很多学者不断探索高效求解OPF 问题的方法,随着研究的不断深入,二阶锥松弛(Second Order Cone Relaxation, SOCR)技术被逐步运用于求解OPF问题。文献[7]建立了以支路潮流计算为基础的OPF模型,针对OPF中的非凸性约束,采用SOCR技术将其松弛为二阶锥约束,整个 OPF 模型则被转化为二阶锥规划( Second Order Cone Programming,SOCP)问题,对其求解可以得到全局最

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

电磁MATLAB

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值