风险与资产配置,量化投资组合与风险管理——第7部分(Matlab代码实现)

      💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、文章


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

《风险与资产配置,量化投资组合与风险管理》

本书包括以下内容:
- 一元、多元和矩阵变量分布
- 联合分布
- 图形表示
-位置-离散度椭球分析
- 最佳复制/最佳因子选择
- 基于FFT的将分布投影到投资期限
- 有关δ/γ定价的注意事项
- 通用估计器的逐步评估
- 非参数估计器
- 多元椭球最大似然估计器
- 收缩估计器:Stein和Ledoit-Wolf,贝叶斯经典等价
- 鲁棒估计器:Hubert M,高破坏度最小体积椭球
- 缺失数据技术:EM算法,不均匀序列条件估计
- 随机支配
- VaR的极值理论
- VaR的Cornish-Fisher近似
- 基于核的VaR和不同风险因素的预期损失的贡献
- 均值-方差分析和陷阱(不同的视野,复利vs线性收益等)
- 贝叶斯估计(多元分析,马尔可夫链蒙特卡洛,相关矩阵的先验)
- 估计风险评估:基于估计的配置的机会成本
- Black Litterman配置
- 鲁棒优化(调用SeDuMi执行锥规划)
- 鲁棒贝叶斯配置

第一部分
在第一部分中,我们介绍了资产配置的统计学,即在投资视野内建模市场价格所需的工具。第1和2章分别向读者介绍了金融风险的形式化,即一元和多元统计学。在第3章中,我们讨论如何检测市场不变量以及如何将它们的分布映射到投资视野内的市场价格分布中。

第二部分
在第二部分中,我们讨论了资产配置的经典方法。在第4章中,我们展示了如何估计市场不变量的分布。在第5章中,我们定义了评估给定分配的优劣的最优标准,一旦市场的分布已知。在第6章中,我们设定并解决了配置问题,通过最大化给定投资约束下分配的优势。

第三部分
在第三部分中,我们介绍了资产配置的现代方法,考虑了估计风险,并将投资者的经验纳入决策过程中。在第7章中,我们介绍了贝叶斯方法用于参数估计。在第8章中,我们更新最优标准,以评估当市场分布仅以某种近似方式已知时分配的优劣。在第9章中,我们在估计风险存在的情况下追求最佳配置,通过根据新定义的最优标准最大化它们的优势。

第四部分
第四部分包括两个数学附录。在附录 A 中,我们回顾了线性代数、几何和矩阵微积分的一些结果。
在附录 B 中,我们借助与线性代数类似之处,启发式地介绍了功能分析的简单工具,这些工具贯穿于主文中。

第一部分
在给定未来视野内,一个投资组合被建模为一个随机变量,并由一元分布表示:在第1章中,我们回顾了一元统计学。我们介绍了泛函随机变量的分布表示,即概率密度函数、累积分布函数、特征函数和分位数,并讨论了期望值、方差和其他形状参数。我们呈现了一元分布的位置和离散性特性的图形解释,并讨论了一些在应用中有用的参数分布。

在一个多证券市场中,市场中实际风险的维度通常远低于证券数量:因此我们讨论维度减少技术,如回归分析和主成分分析,以及它们在位置-分布椭圆的几何解释。最后我们通过一个详细案例研究来结束,该案例涵盖了建模掉期市场所涉及的所有步骤:检测不变量;"水平-斜率-凸起"主成分分析方法用于减少掉期曲线不变量的维度,以及其在频率方面的连续极限解释;以及掉期市场的滚动下降、久期和凸性近似。

第二部分
在书的第一部分,我们建立了形式化配置问题所需的统计背景。在第二部分,我们讨论了解决这些问题的经典方法,包括三个步骤:估计市场分布、评估证券的潜在组合,并根据先前介绍的评估标准优化这些组合。

第四章中,我们从经验观察中估计了市场不变量的分布。估计量是一个将一个数字(估计值)与投资决策时可获得的信息联系起来的函数。这些信息通常由市场不变量过去观察的时间序列表示。我们讨论了评估估计量质量的一般规则。估计量最重要的特征是可复制性,这保证了成功的估计不是偶然发生的。估计量的可复制性通过其损失的分布来衡量,并由误差、偏差和效率来总结。然后,我们介绍了不同情况下的不同估计量:非参数估计量,在观测数量非常大时适用;最大似然估计量在相当普遍的非正态假设下适用,当不变量分布的参数形状已知时适用;收缩估计量,在数据量有限时表现更好;鲁棒估计量,在统计学家对市场不变量的给定参数规范感到不舒服时应使用。在整个分析过程中,我们提供了上述估计量的几何解释。我们最后以实用技巧结论,处理,包括异常值检测和时间序列中的缺失值等其他问题。

在第五章中,我们展示了如何评估资产配置。投资者可以在市场中配置资金以形成证券组合。因此,配置决策由一个向量定义,其条目确定在投资时间W购买的各个证券单位(例如股票)的数量。投资者关注他的主要目标,这是一个随机变量,其分布取决于配置和市场参数:不同的目标对应于不同的投资优先级,例如基准配置、日常交易(盈利和亏损)、财务规划等。评估配置相当于评估相应目标分布的优缺点。我们首先考虑随机优势,这是一种比较全局分布的标准:然而,随机优势并不一定会导致潜在配置的排名。因此,我们定义满意度指标,即配置和市场参数的函数,用于衡量投资者在给定配置后欣赏的目标程度。我们讨论满意度指标可能或应该显示的一般属性。然后,我们专注于三种广泛类别的指标:等价确定性,与预期效用和前景理论相关;目标的分位数,与风险价值概念密切相关;以及一致和光谱满意度测量,与预期缺失概念密切相关。我们讨论如何构建这些指标,并分析它们对基础配置的依赖性。我们解决了一些计算问题,例如Arrow-Pratt近似、伽玛近似、Cornish-Fisher近似和极值理论近似。

在第六章中,我们追求了普通投资者的最优配置。形式上,这相当于在考虑到他的约束条件的情况下最大化投资者的满意度。我们讨论了至少在数值上可以有效解决的配置问题,即凸规划,特别是半定和二阶锥规划问题。在实际问题中,不可能计算配置优化的精确解。然而,可以通过两步方法获得一个很好的近似解。这种方法的核心是均值-方差优化,在这里我们以市场价格的形式在一般背景下呈现,而不是更常见但更限制的回报形式。在相当标准的假设下,均值-方差前沿的计算是一个二次规划问题。在特殊情况下,我们甚至可以计算出分析解,这提供了关于市场对更一般情况下配置的影响的见解:例如,我们证明了非相关市场提供更好的投资机会这种普遍信念是错误的。我们深入分析了管理资产与基准的问题,这是基金经理的明确任务,也是所有投资者的隐含目标。我们讨论了对均值-方差问题的肤浅方法的缺点,例如混淆复利回报和线性回报导致最终配置出现失真。最后,我们提供了一个案例研究,回顾了导致最优配置的所有步骤。 

第三部分在第二部分讨论的资产配置的经典方法中,我们隐含地假设一旦估计了市场的分布,就已知了。然而,这样的分布估计是带有一定误差的。因此,任何实施的配置都不能真正是最优的,而真正最优的配置也无法实施。更重要的是,由于优化过程对输入参数极为敏感,由于估计风险造成的次优性可能是非常严重的。

因此,投资组合经理、交易员以及广义上的专业投资者对传统方法得出的“最优”配置持怀疑态度,更倾向于借助他们的经验。在书的第三部分中,我们提出了一种系统化的方法来解决估计风险,其中也包括在一个合理的统计框架内投资者的经验或模型。遵循传统方法的指导,为了在存在估计风险的情况下确定最优配置,我们需要引入一种新的方法来估计市场分布,更新潜在证券投资组合的评估标准,并根据新引入的评估标准优化这些投资组合。

在第7章中,我们介绍了贝叶斯估计方法。在这种情况下,估计量不是数字:相反,它们是由后验分布建模的随机变量,这个后验分布包含了投资者的经验或先验信念。贝叶斯估计器自然地定义了一个经典等价的估计器和一个不确定性区域。由于投资者难以直接将先验信念输入模型,我们讨论了如何以理想配置的形式间接输入这些信念。

在第8章中,我们介绍了评估通用配置的次优性的标准。这个过程类似于估计量的评估。在这种情况下,估计器的损失就是给定配置的机会成本,即一个表示真正的、但不可实现的最优配置提供满足的满意度与给定配置提供满意度之间的差异的正随机变量。我们分析了两种极端配置方法的机会成本:一种是先前的配置,完全不考虑市场上的任何信息,仅依赖于先验信念;另一种是基于样本的配置,其中未知的市场参数被朴素估计替代。

在第9章中,我们追求在估计风险存在的情况下的最优配置,即机会成本最小的配置。我们提出基于贝叶斯定理的配置,例如经典等价配置和黑-里特曼方法。接下来,我们介绍了米歇尔的重抽样技术。然后我们讨论了稳健的配置,旨在使在一组潜在市场参数中最大可能的机会成本最小化。最后,我们提出了稳健的贝叶斯配置,其中潜在市场参数的集合在后验分布的不确定性集合方面被自然地定义。

📚2 运行结果

部分代码:

% approximate pricing
subplot('Position',[.25 .3 .15 .6]) 
[n,y]=hist(P_Approx,NumBins);
n=n/(NumSimul*(y(2)-y(1)));
h2=barh(y,n);
set(h2,'facecolor','g','edgecolor','g')
[y_lim]=get(gca,'ylim');
set(gca,'xtick',[])
grid on
title(['order ' num2str(Order) ' approx.'])

% true pricing
subplot('Position',[.05 .3 .15 .6]) 
[n,y]=hist(P,NumBins);
n=n/(NumSimul*(y(2)-y(1)));
h1=barh(y,n);
set(h1,'facecolor','r','edgecolor','r')
set(gca,'ylim',y_lim)
set(gca,'xtick',[])
grid on
title(['exact'])

% underlying market
subplot('Position',[.45 .05 .45 .2]) 
[n,x]=hist(X,NumBins);
n=n/(NumSimul*(x(2)-x(1)));
h3=bar(x,n);
set(h3,'facecolor','b','edgecolor','b')
set(gca,'ytick',[])
[x_lim]=get(gca,'xlim');
grid on

% approximate pricing function
subplot('Position',[.45 .3 .45 .6]) 
plot(x,sin(x),'r')
hold on
y=interp1(X,P_Approx,x,'linear','extrap');
plot(x,y,'g')
set(gca,'xlim',x_lim,'ylim',y_lim)

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、文章

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 18
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值