💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
无人水面舰艇(Unmanned Surface Vehicle, USV)作为海洋观测、环境监测、搜索救援、军事侦察和物资运输等领域的新兴技术,其编队控制已成为实现大规模协同作业的关键技术之一。USV编队控制旨在让多艘USV以预定的队形和策略协同工作,以提高任务执行效率、扩大覆盖范围和增强任务灵活性。编队控制涉及多个USV的协调运动,确保它们维持预设的相对位置和航向,同时考虑环境因素(如风浪、水流)和系统约束(如机动能力、通信范围)。USV编队控制是多学科交叉的前沿研究领域,它结合了自动化控制、机器人学、海洋工程和信息科学的最新进展。随着技术的不断成熟,USV编队将在海洋探索、环境保护和国家安全等方面发挥越来越重要的作用,开启海洋智能作业的新篇章。
无人水面艇(Unmanned Surface Vessels, USV)编队控制研究是近年来智能船舶与海洋无人系统领域的一个重要研究方向。它涉及到多机器人系统的协调控制、路径规划、环境感知、通信网络以及自主决策等多个方面,旨在实现一群USV在执行任务时能够高效、安全地协同工作。以下是一些关键研究内容和挑战:
-
编队控制算法:开发先进的控制算法以确保USV编队能维持预定的队形,如等距线形、菱形、圆形等,并能根据外部干扰或任务需求动态调整。这包括 leader-follower 方法、虚拟结构方法、基于行为的方法等。
-
路径规划与避障:研究如何为USV编队设计最优或次优路径,同时考虑海洋环境的动态特性(如水流、风浪)以及静态障碍物,确保航行安全。这需要集成高级的路径规划算法,如A算法、RRT(Rapidly-exploring Random Trees星形)等,并结合实时避障策略。
-
多USV间通信与网络:建立可靠的通信网络,使编队中的每一艘USV都能够及时交换信息,包括位置、速度、任务指令等。研究重点在于提高通信的鲁棒性、带宽效率及网络安全,尤其是在远海或复杂水域条件下。
-
环境感知与数据融合:利用雷达、GPS、声呐、光学相机等多种传感器进行环境感知,通过数据融合技术提高对周围环境的认知精度,为编队控制提供精确的输入信息。这包括SLAM(Simultaneous Localization and Mapping,即时定位与地图构建)技术的应用,以及多源信息的融合处理。
-
自主决策与适应能力:增强USV的自主决策能力,使其能在没有或仅有有限的人类干预下,应对突发情况,如编队成员损失、环境突变或任务变更。这需要发展智能决策支持系统,采用机器学习、深度学习等技术优化决策过程。
-
能量管理与续航:考虑到USV执行远程或长期任务时的能量限制,研究如何有效管理能量消耗,延长续航时间。这涉及能源优化策略、太阳能帆板等可再生能源的利用以及能量高效的航行策略。
-
法律、伦理与标准化:随着USV技术的发展,相关的法律法规制定、海上作业伦理问题及国际标准化也成为研究的重要组成部分,以促进该技术的规范化和国际化应用。
综上所述,USV编队控制研究是一个高度跨学科的领域,需要综合运用控制理论、人工智能、计算机科学、海洋工程等多个领域的知识和技术,以推动无人水面艇技术的实际应用和未来发展。
📚2 运行结果
主函数部分代码:
clc
clear all
close all
ts = 0.05;
tfinal = 600;
Ns = tfinal/ts;
%% parameters initializition
% USV states
USV1.x0 = [0 0 0 5 -3 90*pi/180]';
USV2.x0 = [0 0 0 8 -2 90*pi/180]';
USV3.x0 = [0 0 0 0 -1 90*pi/180]';
USV4.x0 = [0 0 0 -2 -2 90*pi/180]';
USV5.x0 = [0 0 0 -8 -4 90*pi/180]';
% USV inputs
USV1.tauc=[0 0]';
USV2.tauc=[0 0]';
USV3.tauc=[0 0]';
USV4.tauc= [0 0]';
USV5.tauc=[0 0]';
% desired formation
%--------------------------
% USV2 USV4
% USV1
% USV3 USV5
%------------------------
%----------
% Pijd = [p11d,p12d,p13d,p14d,p15d;
% p21d,p22d,p23d,p24d,p25d;
% p31d,p32d,p33d,p34d,p35d;
% p41d,p42d,p43d,p44d,p45d;
% p51d,p52d,p53d,p54d,p55d;];
% Pi0d = diag{[p10d,p20d,p30d,p40d,p50d]};
p11d = [0;0]; p12d = [0;0]; p13d = [0;0]; p14d = [0;0]; p15d = [0;0];
p21d = [10;-10]; p22d = [0;0]; p23d = [0;0]; p24d = [0;0]; p25d = [0;0];
p31d = [-10;-10]; p32d = [0;0]; p33d = [0;0]; p34d = [0;0]; p35d = [0;0];
p41d = [-10;10]; p42d = [0;0]; p43d = [0;0]; p44d = [0;0]; p45d = [0;0];
p51d = [10;10]; p52d = [0;0]; p53d = [0;0]; p54d = [0;0]; p55d = [0;0];
Pijd = [p11d,p12d,p13d,p14d,p15d;
p21d,p22d,p23d,p24d,p25d;
p31d,p32d,p33d,p34d,p35d;
p41d,p42d,p43d,p44d,p45d;
p51d,p52d,p53d,p54d,p55d;];
p10d = [0;0]; p20d = [0;0]; p30d = [0;0]; p40d = [0;0]; p50d = [0;0];
Pi0d = [p10d;p20d;p30d;p40d;p50d];
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]宁君,刘子涵,李伟,等.自适应量化神经网络滑模无人船编队控制[J].上海海事大学学报,2024,45(02):7-13.DOI:10.13340/j.jsmu.202212120365.
[2]李建华,胡清伟,刘中常.具有避碰和连通性保持的多USV分布式事件触发编队控制[J].中国舰船研究,2024,19(01):200-210.DOI:10.19693/j.issn.1673-3185.03390.