KNN算法3

交叉验证

•什么是交叉验证?

是一种数据集的分割方法,将训练集划分为n份,拿一份做验证集(测试集)、其他n-1份做训练集

利用KNN算法实现手写数字识别

def train_model():

data = pd.read_csv('data/手写数字识别.csv')

# 数据预处理归一化

x = data.iloc[:, 1:] / 255

y = data.iloc[:, 0]

# 分割数据集

split_data= train_test_split(x, y, test_size=0.2, stratify=y, random_state=0)

x_train, x_test, y_train, y_test= split_data

# 模型训练

estimator = KNeighborsClassifier(n_neighbors=3)

estimator.fit(x_train, y_train)

# 模型评估

acc = estimator.score(x_test, y_test)

print('测试集准确率: %.2f' % acc)

# 模型保存joblib.dump(estimator, 'model/knn.pth')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值