概率论与数理统计学习心得

均匀分布
X\sim U(a,b),U-uniform
概率密度函数f(x)=\left\{\begin{matrix} \frac{1}{b-a}&,a<x<b\\0&,others \end{matrix}\right.
分布函数F(x)=\left\{\begin{matrix} 0&,x\leqslant a\\ \int_a^x\frac{1}{b-a}dx=\frac{x-a}{b-a}&,a<x\leqslant b\\ 1 &,x>b \end{matrix}\right.
概率函数P\{X>b\}=P\{X<a\}=0\\ P\{c<X<d\}=\frac{d-c}{b-a}(a\leqslant c<d\leqslant b)

指数分布
X\sim E(\theta)
f(x)=\left\{\begin{matrix} \frac{1}{\theta}e^{-\frac{x}{\theta}}&,x>0\\ 0&,x\leqslant0 \end{matrix}\right.
对于一个质子流,质点数的出现符合泊松分布,而两次出现的时间间隔符合指数分布。
无记忆性:描述寿命分布P\{X>s+t|X>s\}=P\{X>t\}

正态分布(Gauss分布)
X\sim N(\mu,\sigma^2),N-nature,\mu位置参数,\sigma形状参数
f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}},x\in R\\ max=f(\mu)=\frac{1}{\sqrt{2\pi}}
拐点(\mu +\sigma ,\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}})
F(x)=\frac{1}{\sqrt{2\pi}\sigma}\int _{-\infty}^xe^{-\frac{(t-\mu)^2}{2\sigma^2}}dt
标准正态分布
X\sim N(0,1)
\varphi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}},x\in R
\phi (x)=\frac{1}{\sqrt{2\pi}}\int _{-\infty}^xe^{-\frac{t^2}{2}}dt
\phi(-x)=1-\phi(x)\\P\{|X|<x\}=P\{-x\leq X<x\}=2\phi(x)-1
变量标准化:若X\sim N(\mu,\sigma^2),则z=\frac{x-\mu}{\sigma}\sim N(0,1)

分布函数法


 

基于STM32设计的数字示波器全套资料(原理图、PCB图、源代码) 硬件平台: 主控器:STM32F103ZET6 64K RAM 512K ROM 屏幕器:SSD1963 分辨率:480*272 16位色 触摸屏:TSC2046 模拟电路: OP-TL084 OP-U741 SW-CD4051 CMP-LM311 PWR-LM7805 -LM7905 -MC34063 -AMS1117-3.3 DRT-ULN2003 6.继电器:信号继电器 7.电源:DC +12V 软件平台: 开发环境:RealView MDK-ARM uVision4.10 C编译器:ARMCC ASM编译器:ARMASM 连机器:ARMLINK 实时内核:UC/OS-II 2.9实时操作系统 GUI内核:uC/GUI 3.9图形用户接口 底层驱动:各个外设驱动程序 数字示波器功能: 波形发生器:使用STM32一路DA实现正弦,三角波,方波,白噪声输出。 任意一种波形幅值在0-3.3V任意可调、频率在一定范围任意可调、方波占空比可调。调节选项可以通过触摸屏完成设置。 SD卡存储: SD卡波形存储输出,能够对当前屏幕截屏,以JPG格式存储在SD卡上。能够存储1S内的波形数据,可以随时调用查看。 数据传输:用C#编写上位机,通过串口完成对下位机的控制。(1)实现STOP/RUN功能(2)输出波形电压、时间参数(3)控制截屏(4)控制波形发生器(5)控制完成FFT(6)波形的存储和显示 图形接口: UCGUI 水平扫速: 250 ns*、500ns、1μs、5 μs、10μs、50μs、500 μs、5ms 、50ms 垂直电压灵敏度:10mV/div, 20mV/div, 50mV/div, 0.1V/div, 0,2V/div, 0.5V/div, 1V/div,2V/
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值