概率论与数理统计学习心得

均匀分布
X\sim U(a,b),U-uniform
概率密度函数f(x)=\left\{\begin{matrix} \frac{1}{b-a}&,a<x<b\\0&,others \end{matrix}\right.
分布函数F(x)=\left\{\begin{matrix} 0&,x\leqslant a\\ \int_a^x\frac{1}{b-a}dx=\frac{x-a}{b-a}&,a<x\leqslant b\\ 1 &,x>b \end{matrix}\right.
概率函数P\{X>b\}=P\{X<a\}=0\\ P\{c<X<d\}=\frac{d-c}{b-a}(a\leqslant c<d\leqslant b)

指数分布
X\sim E(\theta)
f(x)=\left\{\begin{matrix} \frac{1}{\theta}e^{-\frac{x}{\theta}}&,x>0\\ 0&,x\leqslant0 \end{matrix}\right.
对于一个质子流,质点数的出现符合泊松分布,而两次出现的时间间隔符合指数分布。
无记忆性:描述寿命分布P\{X>s+t|X>s\}=P\{X>t\}

正态分布(Gauss分布)
X\sim N(\mu,\sigma^2),N-nature,\mu位置参数,\sigma形状参数
f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}},x\in R\\ max=f(\mu)=\frac{1}{\sqrt{2\pi}}
拐点(\mu +\sigma ,\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}})
F(x)=\frac{1}{\sqrt{2\pi}\sigma}\int _{-\infty}^xe^{-\frac{(t-\mu)^2}{2\sigma^2}}dt
标准正态分布
X\sim N(0,1)
\varphi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}},x\in R
\phi (x)=\frac{1}{\sqrt{2\pi}}\int _{-\infty}^xe^{-\frac{t^2}{2}}dt
\phi(-x)=1-\phi(x)\\P\{|X|<x\}=P\{-x\leq X<x\}=2\phi(x)-1
变量标准化:若X\sim N(\mu,\sigma^2),则z=\frac{x-\mu}{\sigma}\sim N(0,1)

分布函数法


 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值