概率论与数理统计教程(七)-假设检验02:正态总体参数假设检验

这篇博客详细介绍了正态总体参数的假设检验,包括单侧和双侧检验问题,重点讲解了 u 检验和 t 检验的应用。当总体标准差 σ 已知时,使用 u 检验,通过计算检验统计量 u 和拒绝域来判断是否拒绝原假设;当 σ 未知时,采用 t 检验,利用样本标准差 s 替代总体标准差。此外,还讨论了 p 值在检验中的作用,并通过实例展示了如何应用这些检验方法解决实际问题。
摘要由CSDN通过智能技术生成

§ 7.2 正态总体参数假设检验
本节对正态总体参数 μ \mu μ σ 2 \sigma^{2} σ2 的各种检验分别进行讨论.
7.2.1 单个正态总体均值的检验
x 1 , x 2 , ⋯   , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,,xn 是来自 N ( μ , σ 2 ) N\left(\mu, \sigma^{2}\right) N(μ,σ2)
的样本, 考虑如下三种关于 μ \mu μ 的检验问题:
 I  H 0 : μ ⩽ μ 0  vs  H 1 : μ > μ 0 ,   II  H 0 : μ ⩾ μ 0  vs  H 1 : μ < μ 0 ,   III  H 0 : μ = μ 0  vs  H 1 : μ ≠ μ 0 ,  \begin{array}{l} \text { I } H_{0}: \mu \leqslant \mu_{0} \text { vs } H_{1}: \mu>\mu_{0} \text {, } \\ \text { II } H_{0}: \mu \geqslant \mu_{0} \text { vs } H_{1}: \mu<\mu_{0} \text {, } \\ \text { III } H_{0}: \mu=\mu_{0} \text { vs } H_{1}: \mu \neq \mu_{0} \text {, } \\ \end{array}  I H0:μμ0 vs H1:μ>μ0 II H0:μμ0 vs H1:μ<μ0 III H0:μ=μ0 vs H1:μ=μ0

其中 μ 0 \mu_{0} μ0 是已知常数.由于正态总体含两个参数, 总体方差 σ 2 \sigma^{2} σ2
已知与否对检验有影响.下面我们分 σ \sigma σ 已知和未知两种情况叙述.
一、 σ = σ 0 一 、 \sigma=\sigma_{0} 一、σ=σ0 已知时的 u u u 检验
对于(7.2.1) 式所示的单侧检验问题 I \mathrm{I} I, 由于 μ \mu μ 的点估计是
x ˉ \bar{x} xˉ, 且
x ˉ ∼ N ( μ , σ 0 2 / n ) \bar{x} \sim N\left(\mu, \sigma_{0}^{2} / n\right) xˉN(μ,σ02/n),故选用检验统计量
u = x ˉ − μ 0 σ 0 / n u=\frac{\bar{x}-\mu_{0}}{\sigma_{0} / \sqrt{n}} u=σ0/n xˉμ0
是恰当的. 直觉告诉我们: 当样本均值 x ˉ \bar{x} xˉ 不超过设定均值 μ 0 \mu_{0} μ0
时, 应倾向于接受原假设;当样本均值 x ˉ \bar{x} xˉ 超过 μ 0 \mu_{0} μ0 时,
应倾向于拒绝原假设. 可是, 在有随机性存在的场合, 如果 x ˉ \bar{x} xˉ
μ 0 \mu_{0} μ0 大一点就拒绝原假设似乎不当, 只有当 x ˉ \bar{x} xˉ μ 0 \mu_{0} μ0
大到一定程度时拒绝原假设才是恰当的. 这就存在一个临界值 c c c,拒绝域为
W 1 = { ( x 1 , x 2 , ⋯   , x n ) : u ⩾ c } , W_{1}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right): u \geqslant c\right\}, W1={ (x1,x2,,xn):uc},
常简记为 { u ⩾ c } \{u \geqslant c\} { uc}. 若要求检验的显著性水平为 α \alpha α, 则 c c c
满足
P μ 0 ( u ⩾ c ) = α . P_{\mu_{0}}(u \geqslant c)=\alpha . Pμ0(uc)=α.
由于在 μ = μ 0 \mu=\mu_{0} μ=μ0 时, u ∼ N ( 0 , 1 ) u \sim N(0,1) uN(0,1), 故 c = u 1 − α c=u_{1-\alpha} c=u1α (见图
7.2.1(a)), 最后的拒绝域为
W 1 = { u ⩾ u 1 − α } .  W_{1}=\left\{u \geqslant u_{1-\alpha}\right\} \text {. } W1={ uu1α}
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“180px”}
(a)
H 1 : μ > μ 0 H_{1}: \mu>\mu_{0} H1:μ>μ0外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“174px”}
(b)
H 1 : μ < μ 0 H_{1}: \mu<\mu_{0} H1:μ<μ0外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“180px”}
© H 1 : μ ≠ μ 0 H_{1}: \mu \neq \mu_{0} H1:μ=μ0
图7.2.1 u u u 检验的拒绝域
该检验用的检验统计量是 u u u 统计量,故一般称为 u u u 检验. 该检验的势函数是
μ \mu μ 的函数,它可用正态分布写出,具体如下: 对 μ ∈ ( − ∞ , ∞ ) \mu \in(-\infty, \infty) μ(,),
g ( μ ) = P μ ( X ∈ W 1 ) = P μ ( u ⩾ u 1 − α ) = P μ ( x ˉ − μ 0 σ 0 / n ⩾ u 1 − α ) = P μ ( x ˉ − μ + μ − μ 0 σ 0 / n ⩾ u 1 − α ) = P μ ( x ˉ − μ σ 0 / n ⩾ μ 0 − μ σ 0 / n + u 1 − α ) = 1 − Φ ( n ( μ 0 − μ ) / σ 0 + u 1 − α ) . \begin{aligned} g(\mu) & =P_{\mu}\left(\boldsymbol{X} \in W_{1}\right)=P_{\mu}\left(u \geqslant u_{1-\alpha}\right) \\ & =P_{\mu}\left(\frac{\bar{x}-\mu_{0}}{\sigma_{0} / \sqrt{n}} \geqslant u_{1-\alpha}\right) \\ & =P_{\mu}\left(\frac{\bar{x}-\mu+\mu-\mu_{0}}{\sigma_{0} / \sqrt{n}} \geqslant u_{1-\alpha}\right) \\ & =P_{\mu}\left(\frac{\bar{x}-\mu}{\sigma_{0} / \sqrt{n}} \geqslant \frac{\mu_{0}-\mu}{\sigma_{0} / \sqrt{n}}+u_{1-\alpha}\right) \\ & =1-\Phi\left(\sqrt{n}\left(\mu_{0}-\mu\right) / \sigma_{0}+u_{1-\alpha}\right) . \end{aligned} g(μ)=Pμ(XW1)=Pμ(uu1α)=Pμ(σ0/n xˉμ0u1α)=Pμ(σ0/n xˉμ+μμ0u1α)=Pμ(σ0/n xˉμσ0/n μ0μ+u1α)=1Φ(n (μ0μ)/σ0+u1α).
由此可见, 势函数是 μ \mu μ 的增函数, 其图形见图 7.2.2(a). 由增函数性质知,
只要 g ( μ 0 ) = α g\left(\mu_{0}\right)=\alpha g(μ0)=α, 就可保证在 μ ⩽ μ 0 \mu \leqslant \mu_{0} μμ0
时有 g ( μ ) ⩽ α g(\mu) \leqslant \alpha g(μ)α. 所以上述求出的检验是显著性水平为
α \alpha α的检验.
下面我们讲述用 p p p 值进行检验的方法.
类似于 7.1.3 节的讲述, 对给定的样本观测值, 可以计算出相应的检验统计量
u u u 的值, 记为
u 0 = n ( x ˉ − μ 0 ) σ 0 u_{0}=\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{\sigma_{0}} u0=σ0n (xˉμ0), 这里的
x ˉ \bar{x} xˉ 是样本观测值. 因在 μ = μ 0 \mu=\mu_{0} μ=μ0 时, u u u
是服从标准正态分布外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“168px”}
(a)
H 1 : μ > μ 0 H_{1}: \mu>\mu_{0} H1:μ>μ0外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“168px”}
(b)
H 1 : μ < μ 0 H_{1}: \mu<\mu_{0} H1:μ<μ0外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“168px”}
© H 1 : μ ≠ μ 0 H_{1}: \mu \neq \mu_{0} H1:μ=μ0
图 7.2.2 g ( μ ) g(\mu) g(μ) 的图形
的随机变量, 令
p 1 = P ( u ⩾ u 0 ) = 1 − Φ ( u 0 ) , p_{1}=P\left(u \geqslant u_{0}\right)=1-\Phi\left(u_{0}\right), p1=P(uu0)=1Φ(u0),
此即说明 u 0 = u 1 − p 1 u_{0}=u_{1-p_{1}} u0=u1p1,
于是由正态分布函数的反函数的单调性有如下结论:
- 当 p 1 ⩽ α p_{1} \leqslant \alpha p1α 时,
u 1 − α ⩽ u 0 u_{1-\alpha} \leqslant u_{0} u1αu0,于是观测值落在拒绝域里,应拒绝原假设.
- 当 p 1 > α p_{1}>\alpha p1>α 时, u 1 − α > u 0 u_{1-\alpha}>u_{0} u1α>u0, 于是观测值不在拒绝域里,
应接受原假设.
由此可以看出, (7.2.7) 计算出的值就是该检验的 p p p 值.
对检验问题 (7.2.2) 所示的单侧检验问题 II 的讨论是完全类似的. 仍选用 u u u
作为检验统计量, 考虑到(7.2.2) 的备择假设 H 1 H_{1} H1 在左侧, 其拒绝域 (见图
7.2.1(b)) 为
W II  = { u ⩽ u α } . W_{\text {II }}=\left\{u \leqslant u_{\alpha}\right\} . WII ={ uuα}.
而检验的 p p p 值为
p II  = P ( u ⩽ u 0 ) = Φ ( u 0 ) , p_{\text {II }}=P\left(u \leqslant u_{0}\right)=\Phi\left(u_{0}\right), pII =P(uu0)=Φ(u0),
u 0 , u u_{0}, u u0,u 的含义同上,后面还会用到就不再一一指出了.
对检验问题 (7.2.3) 所示的双侧检验问题 III, 也可类似进行讨论,
只不过检验的 p p p值稍有不同. 仍选用 u u u 作为检验统计量, 考虑到 (7.2.3)
的备择假设 H 1 H_{1} H1 分散在两侧, 故其拒绝域亦应在两侧,
即拒绝域应有如下形式
W I  = { ∣ u ∣ ⩾ c } .  W_{\text {I }}=\{|u| \geqslant c\} \text {. } W={ uc}
对给定的显著性水平 α ( 0 < α < 1 ) \alpha(0<\alpha<1) α(0<α<1), 由
P μ 0 ( ∣ u ∣ ⩾ c ) = α P_{\mu_{0}}(|u| \geqslant c)=\alpha Pμ0(uc)=α 可定出 c = u 1 − α / 2 c=u_{1-\alpha / 2} c=u1α/2 (见图
7.2.1 ( c ) ) 7.2 .1(\mathrm{c})) 7.2.1(c)), 最后的拒绝域为
W II  = { ∣ u ∣ ⩾ u 1 − α / 2 } . W_{\text {II }}=\left\{|u| \geqslant u_{1-\alpha / 2}\right\} . WII ={ uu1α/2}.
下面介绍双侧检验的 p p p 值的计算. 在检验统计量分布对称场合, 双侧检验的
p p p 值的计算与单侧检验是类似的,不对称场合我们在后面介绍.
仿上, 令
p III  = P ( ∣ u ∣ ⩾ ∣ u 0 ∣ ) = 2 ( 1 − Φ ( ∣ u 0 ∣ ) ) , p_{\text {III }}=P\left(|u| \geqslant\left|u_{0}\right|\right)=2\left(1-\Phi\left(\left|u_{0}\right|\right)\right), pIII =P(uu0)=2(1Φ(u0)),
此即说明 ∣ u 0 ∣ = u 1 − p I / 2 \left|u_{0}\right|=u_{1-p_{\mathbb{I}} / 2} u0=u1pI/2, 这里要用到
u 0 u_{0} u0 的绝对值是因为对双侧假设检验,
观测值可能为正,也可能为负,二者机会相同,于是有类似的结论:
- 当 p II  ⩽ α p_{\text {II }} \leqslant \alpha pII α 时,
u 1 − α / 2 ⩽ ∣ u 0 ∣ u_{1-\alpha / 2} \leqslant\left|u_{0}\right| u1α/2u0, 于是观测值落在拒绝域里,
应拒绝原假设.
- 当 p I > α p_{\mathbb{I}}>\alpha

  • 8
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值