牛客周赛 Round 92

目录

A-小红的签到题

代码

B-小红的模拟

代码

C-小红的方神题

代码

D-小红的数学题

代码

无注释版

有注释版 

E-小红的ds题

代码

无注释版

有注释版


A-小红的签到题

代码

#include<bits/stdc++.h>
using namespace std;
int main(){
	int n;
	cin>>n;
	char ch='a';
	for(int i=0;i<n;i++){
		if(i==1) cout<<"_";
		else cout<<ch; 
	}
} 

B-小红的模拟

代码

#include<bits/stdc++.h>
using namespace std;
char a[1010][1010];
int main(){
	int n,m;
	cin>>n>>m;
	int x=0,y=0;
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			cin>>a[i][j];
			if(a[i][j]=='#'){
				x=i,y=j;
			}
		}
	}
	if(x<n&&y>1){
		for(int i=1;i<n;i++){
			cout<<"S";
		}
		for(int i=1;i<m;i++){
			cout<<"D";
		}
	}
	else{
		for(int i=1;i<m;i++){
			cout<<"D";
		}
		for(int i=1;i<n;i++){
			cout<<"S";
		}
	}
}

C-小红的方神题

代码

#include<bits/stdc++.h>
using namespace std;
int main(){
	int n;
	cin>>n;
	if(n==1||n==2){
		cout<<"-1";
		return 0;
	}
	cout<<1<<" "<<n<<" ";
	for(int i=n-1;i>=2;i--){
		cout<<i<<" ";
	}
}

D-小红的数学题

代码

无注释版
#include<bits/stdc++.h>
using namespace std;
#define int long long
signed main(){
	int k;
	cin>>k;
	k=k+1;
	for(int i=2;i*i<=k;i++){
		if(k%i==0){
			int a=i-1,b=k/i-1;
			int p=a+b;
			int q=a*b;
			cout<<p<<" "<<q<<"\n";
			return 0;
		}
	}
	cout<<-1;
} 
有注释版 
#include<bits/stdc++.h> // 引入所有标准库头文件,方便使用如cin、cout、sqrt等
using namespace std;

#define int long long // 将int替换为long long,防止整数溢出,支持较大数字如1e12

signed main() { // 主函数,使用signed是为了与#define int long long兼容
    int k;
    cin >> k;        // 输入正整数k
    k = k + 1;       // 将k加1,方便后续分解因数。解释见下。

    // 枚举从2到sqrt(k)的每个整数,寻找k的因数
    for (int i = 2; i * i <= k; i++) {
        if (k % i == 0) { // 如果i是k的因数
            // 设i = a + 1,则a = i - 1
            // k / i = b + 1,则b = k / i - 1
            int a = i - 1, b = k / i - 1;

            // 构造p = a + b,q = a * b
            // 对应二次方程:x^2 - p*x + q = 0
            int p = a + b;
            int q = a * b;

            // 输出满足条件的一组p和q
            cout << p << " " << q << "\n";
            return 0; // 输出后直接结束程序
        }
    }

    // 如果没有找到任何满足条件的(a, b),输出-1
    cout << -1;
}

E-小红的ds题

代码

无注释版
#include<bits/stdc++.h>
using namespace std;
#define int long long
int a[1000010],b[1000010];
int l[1000010],r[1000010];
signed main(){
	int n;
	cin>>n;
	int s=0;
	for(int i=1;i<=n;i++){
		cin>>a[i];
		b[i]=b[i-1]+a[i];
		s+=a[i];
	}
	cout<<1<<"\n";
	int node=2;
	int f=0;
	int fu=1;
	for(int i=2;i<=n;i++){
		int x=a[i];
		int cnt=0;
		while(x--){
			if(f==0){
				l[fu]=node;
				f=1;
				cnt++;
			}
			else{
				r[fu]=node;
				f=0;
				cnt++;
			}
			if(cnt==2){
				fu++;
				cnt=0;
			}
			node++;
		}
		fu=b[i-1]+1;
	}
	for(int i=1;i<=s;i++){
		if(l[i]==0) l[i]=-1;
		if(r[i]==0) r[i]=-1;
		cout<<l[i]<<" "<<r[i]<<"\n";
	}
}
有注释版
#include<bits/stdc++.h>  // 引入所有标准库
using namespace std;

#define int long long  // 将int定义为long long,避免数据溢出

int a[1000010], b[1000010];     // a表示每层节点数,b为前缀和数组
int l[1000010], r[1000010];     // l和r分别表示每个节点的左儿子和右儿子

signed main() {
    int n;
    cin >> n;                   // 输入层数 n
    int s = 0;                  // s 为所有节点数总和

    // 读取每层的节点数,并计算前缀和 b[i],以及总节点数 s
    for(int i = 1; i <= n; i++) {
        cin >> a[i];
        b[i] = b[i-1] + a[i];   // b[i] 表示前 i 层的节点总数
        s += a[i];              // s 是所有层的节点数之和
    }

    cout << 1 << "\n";          // 输出根节点的编号为 1

    int node = 2;               // node 表示下一个要分配的节点编号,从2开始(1是根)
    int f = 0;                  // f 用于交替分配左右儿子(0 表示左儿子,1 表示右儿子)
    int fu = 1;                 // fu 表示当前正在分配子节点的父节点编号

    // 从第二层开始为每一层的节点安排父节点连接关系
    for(int i = 2; i <= n; i++) {
        int x = a[i];           // 当前层的节点数
        int cnt = 0;            // 当前父节点已经连接了几个子节点(最多2个)

        // 为当前层的每个节点分配父节点连接(左或右儿子)
        while(x--) {
            if(f == 0) {
                l[fu] = node;   // 当前父节点的左儿子设为 node
                f = 1;          // 下一次连接右儿子
                cnt++;          // 已连接一个子节点
            } else {
                r[fu] = node;   // 当前父节点的右儿子设为 node
                f = 0;          // 下一个父节点开始连接左儿子
                cnt++;          // 已连接第二个子节点
            }

            if(cnt == 2) {      // 如果当前父节点已经连接两个儿子
                fu++;           // 切换到下一个父节点
                cnt = 0;        // 重置计数
            }

            node++;             // 准备分配下一个新节点
        }

        fu = b[i-1] + 1;        // 更新 fu 为当前层第一个父节点的编号(第 i-1 层的第一个节点编号 + 1)
    }

    // 输出每个节点的左右儿子编号,如果没有则输出 -1
    for(int i = 1; i <= s; i++) {
        if(l[i] == 0) l[i] = -1;    // 没有左儿子
        if(r[i] == 0) r[i] = -1;    // 没有右儿子
        cout << l[i] << " " << r[i] << "\n";  // 输出结果
    }
}
### 关于周赛 Round 80 的相关信息 目前并未找到具体针对周赛 Round 80 的官方题解或比赛详情文档。然而,基于以往的比赛模式和惯例[^1],可以推测出此类赛事通常包含若干算法题目,覆盖基础数据结构、动态规划、贪心策略以及图论等领域。 #### 可能涉及的内容范围 1. **签到题 (A 题)** 这类题目一般较为简单,旨在测试选手的基础编程能力。例如简单的数学计算或者字符串处理问题。 2. **中级难度题 (B 到 D 题)** 中级难度的题目往往需要一定的算法设计能力和复杂度分析技巧。比如: - 动态规划优化问题; - 贪心算法的应用场景; - 图遍历与最短路径求解; 3. **高阶挑战题 (E 或更高)** 对于更复杂的题目,则可能涉及到高级的数据结构操作(如线段树、并查集)、组合数学推导或者其他领域内的难题解决方法。 以下是根据过往经验给出的一个假设性的例子来展示如何解答类似的竞赛问题: ```python def solve_example_problem(n, m): """ 假设这是一个关于矩阵填充的问题, 给定 n 行 m 列大小的空间,按照某种规则填充值。 参数: n -- 矩阵行数 m -- 矩阵列数 返回值: result_matrix -- 完成后的二维列表形式的结果矩阵 """ # 初始化结果矩阵为全零状态 result_matrix = [[0]*m for _ in range(n)] value_to_fill = 1 direction_changes = [(0,1),(1,0),(0,-1),(-1,0)] # 方向变化顺序:右->下->左->上 current_direction_index = 0 row,col=0,0 while True: try: if not(0<=row<n and 0<=col<m): raise IndexError() if result_matrix[row][col]==0: result_matrix[row][col]=value_to_fill value_to_fill+=1 next_row,next_col=row+direction_changes[current_direction_index%len(direction_changes)][0],\ col+direction_changes[current_direction_index%len(direction_changes)][1] if any([not(0<=next_row<n), not(0<=next_col<m), bool(result_matrix[next_row][next_col])]): current_direction_index +=1 else: row,col=next_row,next_col except Exception as e: break return result_matrix if __name__ == "__main__": test_result=solve_example_problem(4,5) for line in test_result: print(line) ``` 上述代码片段展示了如何通过模拟实现一个螺旋状填充整数值至指定尺寸矩形中的过程作为示范案例之一[^4]。 ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值