摘 要
随着科学技术的不断发展,深度学习已经在不同的领域为人类提供更好地服务。因此,本论文将科学技术与生活联系起来,实现基于深度学习的口红识别器。通过了解现阶段深度学习的研究现状,以及对卷积神经网络的分析,应用了目标检测算法作为本系统的核心算法,使用了Vue.js作为框架,结合MySQL数据库,实现了该系统的开发。
一、 课题背景和意义
人工智能是当今社会上的热话题与重点研究对象,国家更是出台了各种政策促进人工智能的发展。人工智能的目的是将机器“拟人化”,协助人类解决各项事宜。如今,人工智能应用于许多行业与领域当中,各类关于人工智能的研究也层出不穷,深度学习的提出更是让人工智能这个领域有了质的飞跃。在时代的大环境下,我们已然进入人工智能时代[1]。
在人工智能日新月异发展的同时,我国的经济也稳步提升,经济的良性发展促进消费水平的提升。在这个契机下,彩妆口红行业迎来了行业的春天。在口红需求提升的大环境下,口红也变成了送礼的最佳选择,但是,口红色号千千万,选对了牌子才成功了一半。在红色能被分为:姨妈红、梅子红、豆沙红等等的彩妆界,色号的分辨真的让人眼花缭乱。
因此,本课题结合了生活与科技,将人工智能与口红有机结合起来,使得人工智能进一步贴近人们的日常生活。
二、卷积神经网络概述
人体的很多功能拥有着许多奥秘,因此许多科技的创新与发展也会利用这些“奥秘”的原理。卷积神经网络正是根据人类视觉奥秘的原理,采用多层神经网络构建了卷积神经网络。卷积神经网络在图像处理方面有着积极的效果,它能在较低层开始识别图像的特征,随着层数的增加能提取到越多的特征,最终在顶层做出分类。随着技术的不断发展,卷积神经网络还应用于数字信号处理、自然语言处理等中,取得了良好的成效。
神经网络的发展从20世纪40年代开始。在该年代,不少模型与理论为神经网络奠定了基础,神经网络的研究有了实质性进展。随后在50年代,一系列神经网络的成果开始涌现,例如感知机、Adaline等。而好景不长,一些在当时无法解决的问题使得神经网络开始沉寂,直到BP算法的提出才让神经网络迎来了新的春天随着时代背景的改变,计算能力与日增强以及大数据的涌现,神经网络迎来了高潮时期。
在时代的大背景下,神经网络已然成为了宠儿,成为了各国各科研人员的重点研究对象,在神经网络中不得不提的便是卷积神经网络,因此卷积神经网络在技术层面也是不断更新,各路大神纷纷提出更优越的CNN网络,不断增加网络的深度与复杂度从性能方面带来提升。各大公司也纷纷斥巨资进行研发,由此看来,卷积神经网络已成为热门课题。
三、量化卷积神经模型
卷积神经网络的性能需求随着其在计算机视觉中的广泛应用不断提高,于是各路大神纷纷提出性能更强的CNN网络以满足需求,网络的性能在神经模型深度的不断增加下得到了高度提升,但此时效率问题也开始产生,模型的存储空间[12]与进行预测的问题是影响效率的关键问题。在21世纪,手机是人类生活的一大需求。如何使得卷积神经网络与手机结合起来,更好地应用于人类生活呢?那么既然想到了这个需求,就必然会有解决办法,于是轻量化卷积神经网络模型诞生了,它的主要设计思想在于更高效的网络计算方式(主要针对卷积方式),使得在不损失网络性能的情况下减少参数。以下介绍3个近年来的轻量化模型:
四、Face-api模型介绍
由前文可知,实现此系统有三个核心步骤,人脸检测、面部标记以及口红颜色对比。其中人脸检测介绍了两个算法,Faster R-CNN算法与SSD算法,由发展历程以及算法原理可知,SSD算法具有更强的检测能力以及更快的检测速度,为本实验的首选算法,再者,为了使得实验更加高效与便捷,本实验将采用Face-api进行应用。Face-api是一个人脸识别框架,它构建在TensorFlow.js核心库之上,通过采用不同的神经网络对人脸样本进行训练,得到人脸识别模型。在深度学习中,构建模型主要是有三个流程:第一,构建神经网络;第二,输入数据集进行训练,得到模型;第三,对获得的模型进行优化后输出。但是Face-api已经实现了上述三个流程,并封装成了方便调用的简易api,意味着我们并不需要去寻找数据集、对数据集进行处理,随后构建神经网络,调整损失函数参数并训练模型,而是可以直接方便地使用人脸识别技术。face-api利用不同的神经网络模型对人脸数据进行训练,得到了不同的模型,如图2-14所示。在本系统中需要用到的模型是ssdMobilenetv1模型和faceLandmark68Net模型。
效果图
总结
从论文启动至今,历时几个月,从最开始的迷茫,到后来一点一点的经验累积,并且在老师、同学的帮助下,最终顺利完成了毕业论文各个环节的工作。
本项目最开始的思想是结合当下热门的技术与实际生活联系起来为人们的生活提供便利。人工智能是当下的热点,各种人工智能的应用也层出不穷,全世界各个国家都在致力于发展人工智能。而之所以会想要做口红色号识别,是因为在我国国民经济不断发展下,化妆品行业也越来越盛行,口红的销量首当其冲;并且在日常生活看剧或者看图片中,有时候总会看到有人在评论下方求口红色号,我就在想,如果有一款自动识别口红色号的系统,或许就能为生活提供更大的便利。
在互联网技术的高速发展的大环境下,人工智能的兴起为人们的生活提供了极大的便利,并广泛应用于各种实时场景,是现代生活必不可少的应用技术。随着近几年机器训练瓶颈的突破以及深度学习理论高速发展,本系统采用的目标检测算法也得到了越来越深入的研究,各种检测算法如春笋般孕育而出,主要发展为端到端的单步检测器和基于区域的目标检测器,各种算法的速度和精确度都得到了显著的提升。