灯塔-概率论与数理统计第二章

 2.1 随机变量的概念

        ①离散型:无限可列个→有限个

        ②非离散型:连续性

2.2.1 离散型随机变量及其概率分布

        ①X的所有取值x_{k}(k=1,2,3...)是可列个        X为所有值,x为X的某个具体取值

        ②P{x=x_{k}}=P_{k}概率函数(分布率)        →        图像法,线段总长度为1

        性质:1.P_{k}\geqslant 0        2.\sum P_{k}=1

——2023.10.19

2.2.2

        连续型随机变量及其概率密度函数

        (1)频数直方图


         (2)频率密度直方图

                ① 每个小长方形的面积=该组的频率
                ② 所有小长方形面积之和=1
                ③ 介于x=a,x=b之间的面积,近似于(a,b]之间的频率

                概率分布密度函数


        定义

        非负可积f(x)≥0,a≤b         P\left \{ a< x\leqslant b \right \}= \int_{a}^{b}f(x)dx

        x:连续性随机变量        f(x):概率分布密度函数        记作x~f(x)

                 性质

        ① f(x)≥0        ② \int_{-\infty }^{+\infty }f(x)=1        ③ 连续型变量取个别值的概率为0

——2023.10.21

        ④ 连续型  端点有无不影响概率

        ⑤ 概率为0未必是不可能事件,概率为1未必是必然事件


        分布函数的定义

        离散,连续都可用        F(x)=P(X\leqslant x)        x\in (-\infty ,+\infty ),F(x)\in [0,1]

        \lim_{x \to +\infty }F(x)=F(+\infty )=1        \lim_{x \to -\infty }F(x)=F(-\infty )=0

        注:可将+∞和-∞看做概率来计算


        性质

        (1)0\leqslant F(x)\leqslant 1,x\in (-\infty ,+\infty )

        (2)F(x)不减,即\forall x_{1}\leqslant x_{2},F(x_{1})\leqslant F(x_{2}) 

        (3)F(x)右连续    -->    ①离散型,右连续;②连续型,连续

                且至多有可列个间断点


        离散型分布函数

        X取值从小到大排序

        分布  —>  概率        间断点x_{k}是X的取值        P\left \{ X=x_{k} \right \}=F(x_{k})-F(x_{k}-0)


        连续型分布函数

——2023.10.23

        F(x)=P(X\leqslant x)=\int_{-\infty }^{x}f(t)dt        {F}'(x)=f(x)

2.2.3

         分布公式:P\left \{ X=k \right \}=p^{k}(1-p)^{1-k}


         离散型常见分布

        ① 0-1分布

        只有两种实验结果        实验值做一次


        ② 几何分布

        P(A)=P,第k次首次发生,前k-1次未发生

         P\left \{ X=k \right \}=(1-p)^{k-1}p^{k}        X\sim G(p)


        ③ 二项分布

        P(A)=P,n次实验,发生了k次

        P\left \{ X=k \right \}=C_{n}^{k}p^{k}(1-p)^{n-k}        X\sim B(n,p)

        注:0-1分布是特殊的二项分布

                最值

        (1)(n+1)p不为整数,[(n+1)p]达最大值

        (2)(n+1)p为整数,(n+1)p,(n+1)p-1达最大值

——2023.10.25

        ④泊松分布

        P\left \{ X=k \right \}=\frac{\lambda ^{k}}{k!}e^{-\lambda }        k=0,1,2,\cdots       

        \lambda > 0        X\sim (\lambda )

        二项分布   n较大,p较小,np适中        -->        可用泊松分布近似        \lambda =np

        n\geqslant 100,np\leqslant 10


         ⑤超几何分布

        N个元素:N1属于第一类,N2属于第二类        从中取n个

        X:k个属于第一类的个数

        P\left \{ X=k \right \}=\frac{C_{N_{1}}^{k}}{C_{N_{2}}^{n-k}}        k=0,1,2,\cdots ,\left \{ min\left \{ n,N_{1} \right \} \right \}

        不放回抽样试验近似看成放回        -->        二项分布

        P\left \{ X=k \right \}=\frac{C_{M}^{k}C_{N-M}^{n-k}}{C_{N}^{n}}\approx C_{N}^{k}p^{k}(1-p)^{n-k}

        超几何分布        →        二项分布        →        泊松分布


         连续型常见分布

        ⑥均匀分布

                                       X\sim U(a,b)

         其分布函数为:

                                  

        该函数图像为:


        ⑦指数分布

                 \lambda >0,X\sim E_{xp}(\lambda )

        其分布函数为:

                                

        该函数图像为:

——2023.10.26

        该分布具有无记忆性,即 P\left \{ X>s+t\mid X>s \right \}=P\left \{ X>t \right \}


        ⑧正态分布

        \phi (x)=\frac{1}{\sqrt{2\pi }\sigma }e\frac{-(x-\mu )^2}{2\sigma ^2}        -\infty <x<+\infty        X\sim N(\mu ,\sigma ^2)

        \psi (x)=\frac{1}{\sqrt{2\pi }\sigma }\int_{-\infty }^{x}e\frac{-(t-\mu )^2}{2\sigma ^2}dt

        性质

        a.  y=\varphi (x) 以 x=\mu 为对称轴        钟型

             x=\mu 时,\varphi (x) 有最大值 \frac{1}{\sqrt{2\pi }\sigma }

        b.  y=\varphi (x) 以x轴为渐近线        x = μ ± δ 为拐点

        d.  σ 固定,μ 变化,左右移动

             μ 固定,σ 变化,σ ↓,最高点上移    陡

                                         σ ↑,最高点下移    缓

                                         尖峰细尾平峰厚尾


        标准正态分布

        μ=0,σ=1        \phi _{0}(x)=\frac{1}{\sqrt{2\pi }}e\frac{-x^2}{2}        -\infty <x<+\infty

                                \psi _{0}(x)=\frac{1}{\sqrt{2\pi } }\int_{-\infty }^{x}e\frac{-t^2}{2}dt

                性质

        y轴为对称轴   -->   偶        \phi _{0}(x)=\phi _{0}(-x)        \psi _{0}(-x)=1-\psi _{0}(x)

——2023.10.30 

         计算:① 查表        0\leqslant x < 5

                    ② -5<x\leqslant 0 ,利用函数性质求解

                    ③ x\geqslant 5 ,\phi _{0}(x)=0        \psi _{0}(x)=1

                    ④ x\leqslant -5 ,\phi _{0}(x)=0        \psi _{0}(x)=0


        一般形式转化成标准形式

        一般正态分布 \varphi (x)=\frac{1}{\sigma } \varphi _{0}(\frac{x-\mu }{\sigma })

                               \psi (x)=\psi _{0}(\frac{x-\mu }{\sigma })

        3 σ 原则

        上 α 分位数

        X\sim N(0 ,1) ,给定 \alpha (0<\alpha <1) ,找 u_{\alpha }(点/值)使 P\left \{ X>u_{\alpha } \right \}=\alpha

2.3.1 随机变量函数的分布(离散型)

        变量  -->  已知        函数  -->  构造

        若函数值存在相同部分,合并概率

2.3.2 随机变量函数的分布(连续型)

        ① X服从[a,b]均匀分布,Y=kX+C(K≠0)服从相应区间上的均匀分布

        ② 正态分布X~N(μ,σ²)        Y=aX+b(a≠0)        N(\left |a \right |\mu +b,a^2\sigma ^2)

             标准正态分布:Y=\frac{X-\mu }{\sigma } ,N(0,1)

        ③ 定理:X的密度 f_{X}(x) ,Y=kX+b(k\neq 0) ,则f_{Y}(x)=\frac{1}{\left | k \right |}f_{X}(\frac{x-b}{k})

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值