灯塔-信号与系统第二章

连续LTI系统卷积公式

        y(t)=x(t)\ast h(t)=\int_{-\infty }^{+\infty }x(\tau )h(t-\tau )d\tau

冲激函数的性质

        性质

        1.\int_{-\infty }^{+\infty }\delta (t)dt=1

        2.\int_{-\infty }^{+\infty }x(t)\delta (t)dt=x(0)

            \int_{-\infty }^{+\infty }x(t)\delta (t-t_{0})dt=x(t_{0})

        3.x(t)\delta (t)=x(0)\delta (t)

            x(t)\delta (t-t_{0})=x(t_{0})\delta (t-t_{0})

                两个函数相等的定义        →        勒贝格

                定义1: f_{1}(t)f_{2}(t)只在有限个上不相等,其他都相等,则f_{1}(t)=f_{2}(t)                定义2 :对任意函数y(t)有:        注:y(t)不可以取奇异函数

                             \int_{-\infty }^{+\infty }y(t)f_{1}(t)dt=\int_{-\infty }^{+\infty }y(t)f_{2}(t)dt(勒贝格定义)

                             f_{1}(t)f_{2}(t)只在可数个上不相等

        4.\delta (at)=\frac{1}{\left | a \right |}\delta (t)

           \delta (at+b)=\frac{1}{\left | a \right |}\delta (t+\frac{b}{a})

——2023.10.20

        5.\delta (f(t))=\Sigma \frac{1}{\left | {f}'(t_{0}) \right |}\delta (t-t_{0})        所有f_{1}(t_{0})=0

        注:4是5的一个特例


        定理

        h_{1}(t)=h_{2 }(t),对\forall x(t)都有x(t)\ast h_{1}(t)=x(t)\ast h_{2}(t)


        无限集

        ① 可数无限集(可数集)

        \exists A\leftrightarrow B 一 一映射,则A与B一样多

        若A与B一样多,则称A与B等势基数相等

        ② 不可数无限集(不可数集) 


        δ(t)的多样性

δ(t)的定义

        引理

        若x(t)不是无限振荡函数,则 \lim_{\omega \to \infty }\int_{-\infty }^{+\infty }x(t)\cos (\omega t)dt=0 

                                                        \lim_{\omega \to \infty }\int_{-\infty }^{+\infty }x(t)\cos (\omega t)dt=0

连续信号卷积计算

        卷积公式y(t)=x(t)\ast h(t)=\int_{-\infty }^{+\infty }x(\tau )h(t-\tau )d\tau

——2023.10.21

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值