群的定义及性质

文章介绍了群论的基本概念,包括群、可交换群(阿贝尔群)的定义,以及群的判定定理。群要求每个元素都有逆元,结合律成立,且存在单位元。文中还讨论了群的性质,如逆元的乘法性质、方程解的唯一性以及消去律。此外,提到了元素的阶、幂等元的概念,并证明了单位元是群中唯一幂等元。最后,文章涉及了有限群中元素阶的性质和一些相关的证明问题。
摘要由CSDN通过智能技术生成

群的定义

< G , ⋅ > \left<G,\cdot\right> G,为独异点,若 G G G中每个元素关于 ⋅ \cdot 都是可逆的,则称 < G , ⋅ > \left<G,\cdot\right> G,
由于群中结合律成立,每个元素的逆元是唯一的

若群 < G , ⋅ > \left<G,\cdot\right> G,中的二元运算 ⋅ \cdot 是可交换的,则称 < G , ⋅ > \left<G,\cdot\right> G,可交换群,也称阿贝尔群

群的判定

定理1:设 < G , ⋅ > \left<G, \cdot\right> G,为半群,若
(1)有左单位元,即 ∃ e l ∈ G \exists e_l\in G elG使 ∀ a ∈ G , e l ⋅ a = a \forall a \in G, e_l \cdot a = a aG,ela=a
(2)每个元素有左逆元,即 ∀ a ∈ G , ∃ a l ∈ G \forall a \in G, \exists a_l \in G aG,alG,使 a l ⋅ a = e l a_l \cdot a=e_l ala=el < G , ⋅ > \left<G, \cdot \right> G,是群

证明:因为 a l ∈ G a_l \in G alG,所以 ∃ a ′ ⋅ a l = e l \exists a^{\prime} \cdot a_l = e_l aal=el,于是
a ⋅ a l = e l ⋅ ( a ⋅ a l ) = ( a ′ ⋅ a l ) ⋅ ( a ⋅ a l ) = a ′ ⋅ ( a l ⋅ a ) ⋅ a l = a ′ ⋅ e l ⋅ a l = a ′ ⋅ ( e l ⋅ a l ) = a ′ ⋅ a l = e l \begin{aligned} a \cdot a_l &=e_l\cdot \left(a \cdot a_l\right)\\ &=\left(a^{\prime} \cdot a_l \right) \cdot \left(a \cdot a_l\right)\\ &=a^{\prime} \cdot \left(a_l\cdot a\right)\cdot a_l\\ &=a^{\prime} \cdot e_l \cdot a_l \\ &=a^{\prime}\cdot\left(e_l\cdot a_l\right)\\ &=a^{\prime} \cdot a_l\\ &=e_l \end{aligned} aal=el(aal)=(aal)(aal)=a(ala)al=aelal=a(elal)=aal=el
因此 a l a_l al也是 a a a的右逆元,进而 a a a可逆

∀ a ∈ G \forall a \in G aG
a ⋅ e l = a ⋅ ( a l ⋅ a ) = ( a ⋅ a l ) ⋅ a = e l ⋅ a = a a\cdot e_l = a\cdot\left(a_l\cdot a\right) = \left(a\cdot a_l\right) \cdot a = e_l \cdot a = a ael=a(ala)=(aal)a=ela=a
因此 e l e_l el是单位元

因此 < G , ⋅ > \left<G,\cdot\right> G,是群

将本定理中的左同时改成右也成立,但是一左一右不一定

定理2:设 < G , ⋅ > \left<G, \cdot\right> G,是半群,若 ∀ a , b ∈ G \forall a,b\in G a,bG,方程 a ⋅ x = b a\cdot x=b ax=b y ⋅ a = b y\cdot a=b ya=b G G G中都有接,则 < G , ⋅ > \left<G,\cdot \right> G,是群

证明:
(1)取 a ∈ G a\in G aG e l e_l el y ⋅ a = a y\cdot a=a ya=a的一个解, ∀ b ∈ G \forall b \in G bG,令 c c c a ⋅ x = b a\cdot x=b ax=b的一个解,则
e l ⋅ b = e l ⋅ ( a ⋅ c ) = ( e l ⋅ a ) ⋅ c = a ⋅ c = b e_l \cdot b = e_l\cdot \left(a\cdot c\right)=\left(e_l\cdot a\right) \cdot c = a\cdot c = b elb=el(ac)=(ela)c=ac=b
e l e_l el是左单位元
(2) ∀ a ∈ G \forall a \in G aG,令 a l a_l al y ⋅ a = e l y\cdot a = e_l ya=el的一个解,则 a l ⋅ a = e l a_l\cdot a = e_l ala=el
由定理1, < G , ⋅ > \left<G,\cdot \right> G,是群

定理3:设 < G , ⋅ > \left<G, \cdot\right> G,是有限半群,若 G G G中消去律成立,则 < G , ⋅ > \left<G,\cdot\right> G,是群

证明:
G = { a 1 , a 2 , ⋯   , a n } G = \left\{a_1,a_2,\cdots, a_n\right\} G={a1,a2,,an}
∀ a , b ∈ G \forall a,b \in G a,bG
G ′ = { a ⋅ a 1 , a ⋅ a 2 , ⋯   , a ⋅ a n } G^{\prime} = \left\{a\cdot a_1, a\cdot a_2,\cdots, a\cdot a_n\right\} G={aa1,aa2,,aan} G ′ ⊆ G G^{\prime} \subseteq G GG
因为消去律成立,若 i ≠ j i \neq j i=j,则 a ⋅ a i ≠ a ⋅ a j a\cdot a_i \neq a \cdot a_j aai=aaj
因此 ∣ G ′ ∣ = G \left|G^{\prime} \right| = G G=G,则 G ′ = G G^{\prime} = G G=G
因为 b ∈ G b \in G bG,有 b ∈ G p r i m e b\in G^{prime} bGprime
∃ k ∈ N \exists k \in \mathbb{N} kN,使得 a ⋅ a k = b a\cdot a_k=b aak=b,所以 a k ∈ G a_k \in G akG是方程 a ⋅ x = b a\cdot x=b ax=b的解
同理, ∀ a , b ∈ G \forall a,b\in G a,bG y ⋅ a = b y\cdot a=b ya=b G G G中有解
由定理2, < G , ⋅ > \left<G,\cdot \right> G,是群

群的性质

< G , ⋅ > \left<G, \cdot\right> G,是群,则
(1) ∀ a , b ∈ G , ( a ⋅ b ) − 1 = b − 1 ⋅ a − 1 \forall a,b \in G, \left(a\cdot b\right)^{-1} = b^{-1}\cdot a^{-1} a,bG,(ab)1=b1a1
(2) ∀ a , b ∈ G \forall a,b\in G a,bG,方程 a ⋅ x = b a\cdot x=b ax=b y ⋅ a = b y\cdot a=b ya=b G G G中有唯一解;
(3) G G G中消去律成立

证明:
(1)
因为 ( b − 1 ⋅ a − 1 ) ⋅ ( a ⋅ b ) = e \left(b^{-1}\cdot a^{-1}\right) \cdot \left(a\cdot b\right) = e (b1a1)(ab)=e
并且 ( a ⋅ b ) ⋅ ( b − 1 ⋅ a − 1 ) = e \left(a\cdot b\right)\cdot \left(b^{-1}\cdot a^{-1}\right) = e (ab)(b1a1)=e
所以 ( a ⋅ b ) − 1 = b − 1 ⋅ a − 1 \left(a\cdot b\right)^{-1} = b^{-1}\cdot a^{-1} (ab)1=b1a1
(2) a ⋅ ( a − 1 ⋅ b ) = b a\cdot\left(a^{-1}\cdot b\right) = b a(a1b)=b所以 a − 1 ⋅ b a^{-1}\cdot b a1b是方程 a ⋅ x = b a\cdot x=b ax=b G G G中的解
c c c也是 a ⋅ x = b a\cdot x = b ax=b G G G中的解,即 a ⋅ c = b a\cdot c = b ac=b,则
c = e ⋅ c = ( a − 1 ⋅ a ) ⋅ c = a − 1 ⋅ ( a ⋅ c ) = a − 1 ⋅ b c = e\cdot c = \left(a^{-1}\cdot a\right)\cdot c=a^{-1}\cdot \left(a\cdot c\right) = a^{-1}\cdot b c=ec=(a1a)c=a1(ac)=a1b
同理 y ⋅ a = b y\cdot a = b ya=b G G G中由唯一解

(3) G G G中每个元素都是可逆的,又因为可逆元都是可约元,故 G G G中消去律成立

元素的阶

< G , ⋅ > \left<G,\cdot\right> G,是群, a ∈ G a\in G aG a a a的整数次幂可归纳定义为:
(1) a 0 = e a^{0}=e a0=e
(2) a n + 1 = a n ⋅ a , n ∈ N a^{n+1}=a^{n} \cdot a, n\in \mathbb{N} an+1=ana,nN
(3) a − n = ( a − 1 ) n , n ∈ I + a^{-n} = \left(a^{-1}\right)^{n} , n\in \mathbb{I}_+ an=(a1)n,nI+

容易证明 ∀ m , n ∈ I , a m ⋅ a n = a m + n , ( a m ) n = a m n \forall m,n\in\mathbb{I}, a^{m}\cdot a^n=a^{m+n},\left(a^m\right)^n=a^{mn} m,nI,aman=am+n,(am)n=amn

定义:设 < G , ⋅ > \left<G,\cdot\right> G,是群, a ∈ G a\in G aG,若 ∀ n ∈ I \forall n \in \mathbb{I} nI a n ≠ e a^{n}\neq e an=e则称 a a a的阶是无限的;
否则称使 a n = e a^{n}=e an=e的最小正整数 n n n a a a
a a a的阶也称 a a a周期,常用 ∣ a ∣ \left|a\right| a表示

显然单位元使群中阶为 1 1 1的唯一元素

定理1:设 < G , ⋅ > \left<G,\cdot\right> G,使群, a ∈ G a\in G aG,且 ∣ a ∣ = n \left|a\right| = n a=n,则 a k = e a^k = e ak=e当且仅当 n ∣ k n\mid k nk
证明:
充分性:若 n ∣ k n\mid k nk,则 ∃ q ∈ I \exists q\in \mathbb{I} qI,使 k = q n k=qn k=qn,则
a k = a q n = ( a n ) q = e q = e a^k =a^{qn} = \left(a^n\right) ^q = e^q =e ak=aqn=(an)q=eq=e
必要性:若 a k = e a^k=e ak=e,设 k = q n + r , 0 ≤ r < n k = qn + r, 0\le r < n k=qn+r0r<n,则
a r = a k − q n = a k ⋅ ( a n ) − q = e ⋅ ( e ) − q = e a^r = a^{k-qn} = a^k \cdot \left(a^n\right)^{-q}=e\cdot \left(e\right)^{-q} = e ar=akqn=ak(an)q=e(e)q=e
n n n使使 a n = e a^n=e an=e的最小正整数,所以 r = 0 r=0 r=0 k = q n k=qn k=qn,故 n ∣ k n\mid k nk

定理2:设 < G , ⋅ > \left<G,\cdot\right> G,使群, a ∈ G a\in G aG,且 ∣ a ∣ = n , k ∈ I \left|a\right|=n, k\in \mathbb{I} a=n,kI
∣ a k ∣ = n ( k , n ) \left|a^k\right| = \frac{n}{\left(k,n\right)} ak =(k,n)n,特别地, ∣ a − 1 ∣ = ∣ a ∣ \left|a^{-1}\right|=\left|a\right| a1 =a

证明:设 ∣ a k ∣ = m \left|a^k\right|=m ak =m,则 a k m = e a^{km}=e akm=e,由定理1, n ∣ k m n\mid km nkm,所以
n ( k , n ) ∣ k ( k , n ) m \frac{n}{\left(k,n\right)}\mid \frac{k}{\left(k,n\right)}m (k,n)n(k,n)km
n ( k , n ) \frac{n}{\left(k,n\right)} (k,n)n k ( k , n ) \frac{k}{\left(k,n\right)} (k,n)k互质,故 n ( k , n ) ∣ m \frac{n}{\left(k,n\right)}\mid m (k,n)nm,又因为
( a k ) n ( k , n ) = ( a n ) k ( k , n ) = e \left(a^k\right)^{\frac{n}{\left(k,n\right)}}=\left(a^n\right)^{\frac{k}{\left(k,n\right)}}=e (ak)(k,n)n=(an)(k,n)k=e
所以 m ∣ n ( k , n ) m\mid \frac{n}{\left(k,n\right)} m(k,n)n,而 m , n ( k , n ) ∈ I + m,\frac{n}{\left(k,n\right)}\in \mathbb{I}_+ m,(k,n)nI+,故 m = n ( k , n ) m=\frac{n}{\left(k,n\right)} m=(k,n)n

定理3:设 < G , ⋅ > \left<G,\cdot\right> G,为有限群, ∣ G ∣ = n \left|G\right|=n G=n,则 ∀ a ∈ G , ∣ a ∣ ≤ n \forall a\in G,\left|a\right|\le n aG,an
证明: ∀ a ∈ G , a , a 2 , ⋯   , a n + 1 \forall a\in G, a,a^2,\cdots, a^{n+1} aG,a,a2,,an+1中必有两个相同元,设为 a i = a j a^{i}=a^{j} ai=aj,其中 1 ≤ i < j ≤ n + 1 1\le i < j \le n+1 1i<jn+1,
a j − i = e a^{j-i}=e aji=e,故 ∣ a ∣ ≤ j − i ≤ n \left|a\right|\le j-i\le n ajin

课后习题

6.试证明:单位元是群中唯一幂等元

证明:
设群 G = < A , ∗ > G=\left<A,*\right> G=A, e e e为单位元
e ∗ e = e e*e=e ee=e,因此 e e e是幂等元

a ∈ A , a ∗ a = a a\in A, a * a = a aA,aa=a
a ∗ a = e ∗ a ∗ a = e ∗ ( a ∗ a ) = e ∗ a ⇒ a = e a * a= e * a *a = e * \left(a * a\right)=e*a\Rightarrow a = e aa=eaa=e(aa)=eaa=e
因此单位元是群中唯一幂等元

8.设 < G , ⋅ > \left<G,\cdot\right> G,为群, a , b ∈ G , a ≠ e a,b\in G,a\neq e a,bG,a=e a 4 b = b a 5 a^4b=ba^5 a4b=ba5,试证: a b ≠ b a ab\neq ba ab=ba
证明:
a b = b a ab=ba ab=ba
a 4 b = b a 5 a 3 b a = b a 5 b a 4 = b a 5 e = a \begin{aligned} a^4b &= ba^5\\ a^3ba &= ba^5\\ ba^4 &=ba^5\\ e &=a \end{aligned} a4ba3baba4e=ba5=ba5=ba5=a
矛盾

9.设 < G , ⋅ > \left<G,\cdot\right> G,为群,且 ∀ a , b ∈ G \forall a,b\in G a,bG,有 a 3 b 3 = ( a b ) 3 , a 5 b 5 = ( a b ) 5 a^3b^3=\left(ab\right)^3,a^5b^5=\left(ab\right)^5 a3b3=(ab)3,a5b5=(ab)5
试证: < G , ⋅ > \left<G,\cdot\right> G,为可交换群

证明:
a 3 b 3 = ( a b ) 3 ⇒ a 2 b 2 = ( b a ) 2 a 5 b 5 = ( a b ) 5 ⇒ a 4 b 4 = ( b a ) 4 a^3b^3=\left(ab\right)^3\Rightarrow a^2b^2=\left(ba\right)^2\\ a^5b^5=\left(ab\right)^5\Rightarrow a^4b^4=\left(ba\right)^4 a3b3=(ab)3a2b2=(ba)2a5b5=(ab)5a4b4=(ba)4
进而
a 4 b 4 = ( b a ) 4 a 4 b 4 = ( a 2 b 2 ) 2 a 2 b 2 = b 2 a 2 ( b a ) 2 = b 2 a 2 a b = b a \begin{aligned} a^4b^4 &= \left(ba\right)^4\\ a^4b^4 &=\left(a^2b^2\right)^2\\ a^2b^2 &=b^2 a^2\\ \left(ba\right)^2 &=b^2a^2\\ ab &= ba \end{aligned} a4b4a4b4a2b2(ba)2ab=(ba)4=(a2b2)2=b2a2=b2a2=ba

10.试求 < N 6 , + 6 > \left<\mathbb{N}_6, +_6\right> N6,+6种每个元素的阶

解:
单位元为 0 0 0
0 0 0的阶为 1 1 1
1 1 1的阶为 6 6 6
2 2 2的阶为 3 3 3
3 3 3的阶为 2 2 2
4 4 4的阶为 3 3 3
5 5 5的阶为 6 6 6

11.试证:除单位元外的元素的阶都是 2 2 2的群是可交换群
证明:
设群 < G , ⋅ > \left<G,\cdot\right> G,, e e e G G G的单位元
∀ a ∈ G , a ≠ e \forall a\in G, a\neq e aG,a=e
a 2 = e ⇒ a = a − 1 a^2 = e\Rightarrow a = a^{-1} a2=ea=a1
同时 e − 1 = e e^{-1}=e e1=e

a b = a − 1 b − 1 = ( b a ) − 1 = b a ab=a^{-1}b^{-1}=\left(ba\right)^{-1}=ba ab=a1b1=(ba)1=ba

12.试证:有限群中阶大于2的元素的个数一定是偶数

证明:
设群 < G , ⋅ > \left<G,\cdot\right> G,, e e e G G G的单位元
a ∈ G , ∣ a ∣ = n > 2 a\in G, \left|a\right|=n>2 aG,a=n>2
a n ( a − 1 ) n = e e ( a − 1 ) n = e ( a − 1 ) n = e \begin{aligned} a^n\left(a^{-1}\right)^n=e\\ e\left(a^{-1}\right)^n=e\\ \left(a^{-1}\right)^n=e\\ \end{aligned} an(a1)n=ee(a1)n=e(a1)n=e
因此 ∣ a − 1 ∣ ≤ n \left|a^{-1}\right|\le n a1 n
∣ a − 1 ∣ = m < n \left|a^{-1}\right|=m <n a1 =m<n
则有 a m = e a^m=e am=e,矛盾

因此 ∣ a − 1 ∣ = n \left|a^{-1}\right|=n a1 =n

如果 a = a − 1 a=a^{-1} a=a1,则 a a − 1 = a 2 = e aa^{-1}=a^2=e aa1=a2=e
矛盾

如果 b ∈ G , b ≠ a , b ≠ a − 1 b\in G,b\neq a,b\neq a^{-1} bG,b=a,b=a1
如果 b − 1 = a b^{-1}=a b1=a,则 a − 1 a^{-1} a1有两个逆元,矛盾
如果 b − 1 = a − 1 b^{-1}=a^{-1} b1=a1,则 a a a有两个逆元,矛盾

因此阶大于2的元素总是成对出现
又因为这是有限群,因此阶大于2的元素的个数一定是偶数

13.试证:偶数阶群中阶为 2 2 2的元素个数一定是奇数
证明:
单位元阶为 1 1 1
阶大于 2 2 2的元素个数为偶数
因此阶等于 2 2 2的元素个数为奇数

14.设 < G , ⋅ > \left<G,\cdot\right> G,为群, a , b ∈ G a,b\in G a,bG。试证: ∣ a ⋅ b ∣ = ∣ b ⋅ a ∣ \left|a\cdot b\right|=\left|b\cdot a\right| ab=ba
证明:
G G G单位元为 e e e
∣ a ⋅ b ∣ = n \left|a\cdot b\right|=n ab=n
( a ⋅ b ) n = e \left(a\cdot b\right)^n=e (ab)n=e
( a ⋅ b ) n = e a ⋅ ( b ⋅ a ) n − 1 ⋅ b = e ( b ⋅ a ) n − 1 ⋅ b = a − 1 ( b ⋅ a ) n − 1 = a − 1 ⋅ b − 1 ( b ⋅ a ) n − 1 ⋅ b = a − 1 ( b ⋅ a ) n − 1 ⋅ b ⋅ a = e ( b ⋅ a ) n = e \begin{aligned} \left(a\cdot b\right)^n&=e\\ a\cdot \left(b\cdot a\right)^{n-1}\cdot b&= e\\ \left(b\cdot a\right)^{n-1}\cdot b&= a^{-1}\\ \left(b\cdot a\right)^{n-1}&= a^{-1}\cdot b^{-1}\\ \left(b\cdot a\right)^{n-1}\cdot b&= a^{-1}\\ \left(b\cdot a\right)^{n-1}\cdot b\cdot a&= e\\ \left(b\cdot a\right)^{n}&= e\\ \end{aligned} (ab)na(ba)n1b(ba)n1b(ba)n1(ba)n1b(ba)n1ba(ba)n=e=e=a1=a1b1=a1=e=e
假设 ∣ b ⋅ a ∣ = m < n \left|b\cdot a\right|=m<n ba=m<n
( a ⋅ b ) m = e \left(a\cdot b\right)^m=e (ab)m=e矛盾
因此 ∣ a ⋅ b ∣ = ∣ b ⋅ a ∣ \left|a\cdot b\right|=\left|b\cdot a\right| ab=ba

15.设 < G , ⋅ > \left<G,\cdot\right> G,为群, a , b ∈ G a,b\in G a,bG,且 a ⋅ b = b ⋅ a a\cdot b=b\cdot a ab=ba
试证:若 ∣ a ∣ \left|a\right| a ∣ b ∣ \left|b\right| b互质,则 ∣ a ⋅ b ∣ = ∣ a ∣ ⋅ ∣ b ∣ \left|a\cdot b\right|=\left|a\right|\cdot \left|b\right| ab=ab

证明:
∣ a ∣ = m , ∣ b ∣ = n , ∣ a ⋅ b ∣ = r \left|a\right|=m, \left|b\right|=n, \left|a\cdot b\right|=r a=m,b=n,ab=r,单位元为 e e e
( a b ) m n = a m n b m n = e ⇒ r ∣ m n \left(ab\right)^{mn}=a^{mn}b^{mn}=e\Rightarrow r \mid mn (ab)mn=amnbmn=ermn
e = ( a b ) r = ( a b ) r m = a r m b r m = b r m ⇒ n ∣ r m e = \left(ab\right)^r=\left(ab\right)^{rm}=a^{rm}b^{rm}=b^{rm}\Rightarrow n\mid rm e=(ab)r=(ab)rm=armbrm=brmnrm
又因为 ( m , n ) = 1 \left(m,n\right)=1 (m,n)=1,有 n ∣ r n\mid r nr
同理 m ∣ r m\mid r mr
因此 m n ∣ r mn \mid r mnr
m n = r mn = r mn=r
∣ a ⋅ b ∣ = ∣ a ∣ ⋅ ∣ b ∣ \left|a\cdot b\right|=\left|a\right|\cdot \left|b\right| ab=ab

16.设 < G , ⋅ > \left<G,\cdot\right> G,为交换群, a a a G G G中阶最大的元,且 ∣ a ∣ = n \left|a\right|=n a=n。试证: ∀ b ∈ G \forall b\in G bG ∣ b ∣ \left|b\right| b整除 ∣ a ∣ \left|a\right| a

证明:
b ∈ G , ∣ b ∣ = m b\in G, \left|b\right|=m bG,b=m
如果 m ∤ n m\not\mid n mn,则存在质数 p p p,使得
n = p k n 1 , p ∤ n 1 m = p s m 1 , p ∤ m 1 , s > k n=p^k n_1,\quad p\not\mid n_1 \\ m = p^s m_1,\quad p\not\mid m_1, s > k n=pkn1,pn1m=psm1,pm1,s>k
从而
∣ a p k ∣ = n 1 ∣ b m 1 ∣ = p s \left|a^{p^{k}}\right|=n_1\\ \left|b^{m_1}\right|=p^{s} apk =n1bm1=ps
因为 ( n 1 , p s ) = 1 \left(n_1,p^s\right)=1 (n1,ps)=1由上一题
∣ a p k b m 1 ∣ = n 1 p s > n 1 p k = n \left|a^{p^{k}}b^{m_1}\right|=n_1p^s>n_1p^k=n apkbm1 =n1ps>n1pk=n
a a a G G G中阶最大的元矛盾
因此 ∣ b ∣ \left|b\right| b整除 ∣ a ∣ \left|a\right| a

参考:
离散数学(刘玉珍)

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值