今天教大家绘制一个基于云模型的散点图。云模型是一种不确定性推理方法,用于描述定性概念与其定量表示之间的不确定性转换。
10.1基本图形
10.1.1图像呈现
10.1.2代码详情
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
def plot_cloud_model(Ex, En, He, n, ax, label='', color = 'r',marker = 'o'):
'''
Ex 期望
En 熵
He 超熵
n 云滴数量
'''
Y = np.zeros((1, n))
np.random.seed(int(np.random.random()*100))
X= np.random.normal(loc=En, scale=He, size=n)
Y = Y[0]
for i in range(n):
np.random.seed(int(np.random.random()*100) + i + 1)
Enn = X[i]
X[i] = np.random.normal(loc=Ex, scale=np.abs(Enn), size=1)
Y[i] = np.exp(-(X[i] - Ex) * (X[i] - Ex) / (2 * Enn * Enn))
ax.scatter(X, Y, s=10, alpha=0.5, c=color, marker=marker, label=label)
fig = plt.figure(len(plt.get_fignums()))
ax = fig.add_subplot(111) #创建画布
title = '准确性(R)'
ax.set_title(title)#在ax指向的画布上绘图
ax.set_xlabel('期望')
ax.set_ylabel('隶属度')
#调用函数
plot_cloud_model(70.58, 5.7374, 8.4585, 5000, ax,'云','black','*')
ax.legend(loc='best')
plt.show()
10.2多图绘制
10.2.1图像呈现
10.2.2代码详情
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
def plot_cloud_model(Ex, En, He, n, ax, label='', color = 'r',marker = 'o'):
'''
Ex 期望
En 熵
He 超熵
n 云滴数量
'''
Y = np.zeros((1, n))
np.random.seed(int(np.random.random()*100))
X= np.random.normal(loc=En, scale=He, size=n)
Y = Y[0]
for i in range(n):
np.random.seed(int(np.random.random()*100) + i + 1)
Enn = X[i]
X[i] = np.random.normal(loc=Ex, scale=np.abs(Enn), size=1)
Y[i] = np.exp(-(X[i] - Ex) * (X[i] - Ex) / (2 * Enn * Enn))
ax.scatter(X, Y, s=10, alpha=0.5, c=color, marker=marker, label=label)
fig = plt.figure(len(plt.get_fignums()))
ax = fig.add_subplot(231) #创建画布
title = '准确性(R)'
ax.set_title(title)#在ax指向的画布上绘图
ax.set_xlabel('期望')
ax.set_ylabel('隶属度')
#调用函数
plot_cloud_model(70.58, 5.7374, 8.4585, 5000, ax,'云','black','*')
ax.legend(loc='best')
ax = fig.add_subplot(232) #创建画布
title = 'XX性(R)'
ax.set_title(title)#在ax指向的画布上绘图
ax.set_xlabel('期望')
ax.set_ylabel('隶属度')
#调用函数
plot_cloud_model(70.58, 5.7374, 8.4585, 5000, ax,'云','black','*')
ax.legend(loc='best')
ax = fig.add_subplot(233) #创建画布
title = 'XX性(R)'
ax.set_title(title)#在ax指向的画布上绘图
ax.set_xlabel('期望')
ax.set_ylabel('隶属度')
#调用函数
plot_cloud_model(70.58, 5.7374, 8.4585, 5000, ax,'云','black','*')
ax.legend(loc='best')
ax = fig.add_subplot(234) #创建画布
title = 'XX性(R)'
ax.set_title(title)#在ax指向的画布上绘图
ax.set_xlabel('期望')
ax.set_ylabel('隶属度')
#调用函数
plot_cloud_model(70.58, 5.7374, 8.4585, 5000, ax,'云','black','*')
ax.legend(loc='best')
ax = fig.add_subplot(235) #创建画布
title = 'XX性(R)'
ax.set_title(title)#在ax指向的画布上绘图
ax.set_xlabel('期望')
ax.set_ylabel('隶属度')
#调用函数
plot_cloud_model(70.58, 5.7374, 8.4585, 5000, ax,'云','black','*')
ax.legend(loc='best')
ax = fig.add_subplot(236) #创建画布
title = 'XX性(R)'
ax.set_title(title)#在ax指向的画布上绘图
ax.set_xlabel('期望')
ax.set_ylabel('隶属度')
#调用函数
plot_cloud_model(70.58, 5.7374, 8.4585, 5000, ax,'云','black','*')
ax.legend(loc='best')
plt.show()
熬夜编码调试,今日分享到此结束,需要交流的请大家私信我。