Python绘图-10评估指标评价云图

今天教大家绘制一个基于云模型的散点图。云模型是一种不确定性推理方法,用于描述定性概念与其定量表示之间的不确定性转换。

10.1基本图形

10.1.1图像呈现

10.1.2代码详情 

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

def plot_cloud_model(Ex, En, He, n, ax, label='', color = 'r',marker = 'o'):
    '''
    Ex 期望
    En 熵
    He 超熵
    n 云滴数量
    
    '''
     
    Y = np.zeros((1, n))
    np.random.seed(int(np.random.random()*100))
    X= np.random.normal(loc=En, scale=He, size=n)
    Y = Y[0]
    for i in range(n):
        np.random.seed(int(np.random.random()*100) + i + 1)
        Enn = X[i]
        X[i] = np.random.normal(loc=Ex, scale=np.abs(Enn), size=1)
        Y[i] = np.exp(-(X[i] - Ex) * (X[i] - Ex) / (2 * Enn * Enn))
    ax.scatter(X, Y, s=10, alpha=0.5, c=color, marker=marker, label=label)

fig = plt.figure(len(plt.get_fignums()))
ax = fig.add_subplot(111) #创建画布
title = '准确性(R)'
ax.set_title(title)#在ax指向的画布上绘图
ax.set_xlabel('期望')
ax.set_ylabel('隶属度')
#调用函数
plot_cloud_model(70.58, 5.7374, 8.4585, 5000, ax,'云','black','*')

ax.legend(loc='best')
plt.show()

10.2多图绘制

10.2.1图像呈现

10.2.2代码详情

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

def plot_cloud_model(Ex, En, He, n, ax, label='', color = 'r',marker = 'o'):
    '''
    Ex 期望
    En 熵
    He 超熵
    n 云滴数量
    
    '''
     
    Y = np.zeros((1, n))
    np.random.seed(int(np.random.random()*100))
    X= np.random.normal(loc=En, scale=He, size=n)
    Y = Y[0]
    for i in range(n):
        np.random.seed(int(np.random.random()*100) + i + 1)
        Enn = X[i]
        X[i] = np.random.normal(loc=Ex, scale=np.abs(Enn), size=1)
        Y[i] = np.exp(-(X[i] - Ex) * (X[i] - Ex) / (2 * Enn * Enn))
    ax.scatter(X, Y, s=10, alpha=0.5, c=color, marker=marker, label=label)

fig = plt.figure(len(plt.get_fignums()))
ax = fig.add_subplot(231) #创建画布
title = '准确性(R)'
ax.set_title(title)#在ax指向的画布上绘图
ax.set_xlabel('期望')
ax.set_ylabel('隶属度')
#调用函数
plot_cloud_model(70.58, 5.7374, 8.4585, 5000, ax,'云','black','*')

ax.legend(loc='best')

ax = fig.add_subplot(232) #创建画布
title = 'XX性(R)'
ax.set_title(title)#在ax指向的画布上绘图
ax.set_xlabel('期望')
ax.set_ylabel('隶属度')
#调用函数
plot_cloud_model(70.58, 5.7374, 8.4585, 5000, ax,'云','black','*')
ax.legend(loc='best')

ax = fig.add_subplot(233) #创建画布
title = 'XX性(R)'
ax.set_title(title)#在ax指向的画布上绘图
ax.set_xlabel('期望')
ax.set_ylabel('隶属度')
#调用函数
plot_cloud_model(70.58, 5.7374, 8.4585, 5000, ax,'云','black','*')
ax.legend(loc='best')

ax = fig.add_subplot(234) #创建画布
title = 'XX性(R)'
ax.set_title(title)#在ax指向的画布上绘图
ax.set_xlabel('期望')
ax.set_ylabel('隶属度')
#调用函数
plot_cloud_model(70.58, 5.7374, 8.4585, 5000, ax,'云','black','*')
ax.legend(loc='best')

ax = fig.add_subplot(235) #创建画布
title = 'XX性(R)'
ax.set_title(title)#在ax指向的画布上绘图
ax.set_xlabel('期望')
ax.set_ylabel('隶属度')
#调用函数
plot_cloud_model(70.58, 5.7374, 8.4585, 5000, ax,'云','black','*')
ax.legend(loc='best')

ax = fig.add_subplot(236) #创建画布
title = 'XX性(R)'
ax.set_title(title)#在ax指向的画布上绘图
ax.set_xlabel('期望')
ax.set_ylabel('隶属度')
#调用函数
plot_cloud_model(70.58, 5.7374, 8.4585, 5000, ax,'云','black','*')

ax.legend(loc='best')


plt.show()

熬夜编码调试,今日分享到此结束,需要交流的请大家私信我。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pythoner研习社

整理不易,感谢金主!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值