Spark on yarn 模式部署
使用的软件是Hadoop-3.1.3和spark-3.1.1
关于hadoop的部署可查看主页文章
1、配置环境变量
vim /etc/profile.d/bigdata_env.sh
此文件为新建的存放个人配置的环境变量
export SPARK_HOME=/opt/module/spark-yarn
export PATH=$SPARK_HOME/bin:$PATH
2、修改 conf 目录下的配置文件
spark-env.sh和spark-defaults.conf文件需要重命名
mv spark-env.sh.template spark-env.sh
mv spark-defaults.conf.template spark-defaults.conf
vim spark-env.sh
=> spark的使用 需要引入 hadoop 的配置文件路径,若使用 yarn 则还需要 yarn 的配置文件路径
export HADOOP_CONF_DIR=/etc/module/hadoop/etc/hadoop
export YARN_CONF_DIR=/etc/module/hadoop/etc/hadoop
vim spark-defaults.conf
=> 设置 spark 的一些相关默认配置
# 指定 spark 使用的环境为 yarn
spark.master yarn
# spark 启用事件日志
spark.eventLog.enabled true
# 配置 spark 的事件日志的目录
spark.eventLog.dir hdfs://master:9000/spark-logs
# 配置 spark 历史文件存储目录
spark.history.fs.logDirectory hdfs://master:9000/spark-logs
# 配置spark使用的 yarn 的历史服务器的地址
spark.yarn.historyServer.address http://master:18080
# 配置 spark 将要运行的临时资源文件上传到 hdfs 的目录中供 yarn 访问使用
spark.yarn.stagingDir hdfs://master:9000/spark-Staging
spark历史服务器启动之前前,需要在 hdfs 创建对应的目录
hdfs dfs -mkdir -p /spark-logs
hdfs dfs -mkdir -p /spark-Staging
运行 spark 自带的 examples 代码,计算 pi 值,以下为运行命令
spark-submit \
--master yarn \
--deploy-mode client \
--class org.apache.spark.examples.SparkPi \
$SPARK_HOME/examples/jars/spark-examples_2.12-3.1.1.jar
如果出现如图这个错误,是因为yarn关于容器内存溢出的限制,去hadoop的
yarn-site.xml
配置文件里面配置以下配置
<!--禁用yarn对容器进行物理内存限制 => 可以避免出现物理内存溢出导致容器被kill的错误-->
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
<!--禁用yarn对容器进行虚拟内存限制 => 可以避免出现虚拟内存溢出导致容器被kill的错误-->
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
执行成功的结果截图 => 第八九行那里有 Pi 的计算值