仅用250美元,Hugging Face技术主管手把手教你微调Llama 3

大语言模型的微调一直是说起来容易做起来难的事儿。近日 Hugging Face 技术主管 Philipp Schmid 发表了一篇博客,详细讲解了如何利用 Hugging Face 上的库和 fsdp 以及 Q-Lora 对大模型进行微调。

我们知道,Meta 推出的 Llama 3、Mistral AI 推出的 Mistral 和 Mixtral 模型以及 AI21 实验室推出的 Jamba 等开源大语言模型已经成为 OpenAI 的竞争对手。

不过,大多数情况下,使用者需要根据自己的数据对这些开源模型进行微调,才能充分释放模型的潜力。

虽然在单个 GPU 上使用 Q-Lora 对较小的大语言模型(如 Mistral)进行微调不是难事,但对像 Llama 3 70b 或 Mixtral 这样的大模型的高效微调直到现在仍是一个难题。

因此,Hugging Face 技术主管 Philipp Schmid 介绍了如何使用 PyTorch FSDP 和 Q-Lora,并在 Hugging Face 的 TRL、Transformers、peft 和 datasets 等库的帮助下,对 Llama 3 进行微调。除了 FSDP,作者还对 PyTorch 2.2 更新后的 Flash Attention v2 也进行了适配。

微调主要步骤如下:

  • 设置开发环境

  • 创建并加载数据集

  • 使用 PyTorch FSDP、Q-Lora 和 SDPA 微调大语言模型

  • 测试模型并进行推理

注:本文进行的实验是在英伟达(NVIDIA)H100 和英伟达(NVIDIA)A10G GPU 上创建和验证的。配置文件和代码针对 4xA10G GPU 进行了优化,每个 GPU 均配备 24GB 内存。如果使用者有更多的算力,第 3 步提到的配置文件(yaml 文件)需要做相应的修改。

FSDP+Q-Lora 背景知识

基于一项由 Answer.AI、Q-Lora 创建者 Tim Dettmers 和 Hugging Face 共同参与的合作项目,作者对 Q-Lora 和 PyTorch FSDP(完全共享数据并行)所能提供的技术支持进行了总结。

FSDP 和 Q-Lora 的结合使用能让使用者在 2 个消费级 GPU(24GB)上就能对 Llama 2 70b 或 Mixtral 8x7B 进行微调,细节可以参考下面文章。其中 Hugging Face 的 PEFT 库对此有至关重要的作用。

文章地址:https://www.answer.ai/posts/2024-03-06-fsdp-qlora.html

PyTorch FSDP 是一种数据 / 模型并行技术,它可以跨 GPU 分割模型,减少内存需求,并能够更有效地训练更大的模型。Q-LoRA 是一种微调方法,它利用量化和低秩适配器来有效地减少计算需求和内存占用。

设置开发环境

第一步是安装 Hugging Face Libraries 以及 Pyroch,包括 trl、transformers 和 datasets 等库。trl 是建立在 transformers 和 datasets 基础上的一个新库,能让对开源大语言模型进行微调、RLHF 和对齐变得更容易。

# Install Pytorch for FSDP and FA/SDPA``   ``%pip install "torch==2.2.2" tensorboard``   ``   ``# Install Hugging Face libraries``   ``%pip install  --upgrade "transformers==4.40.0" "datasets==2.18.0" "accelerate==0.29.3" "evaluate==0.4.1" "bitsandbytes==0.43.1" "huggingface_hub==0.22.2" "trl==0.8.6" "peft==0.10.0"

接下来,登录 Hugging Face 获取 Llama 3 70b 模型。

创建和加载数据集

环境设置完成后,我们就可以开始创建和准备数据集了。微调用的数据集应该包含使用者想要解决的任务的示例样本。阅读《如何在 2024 年使用 Hugging Face 微调 LLM》可以进一步了解如何创建数据集。

文章地址:https://www.philschmid.de/fine-tune-llms-in-2024-with-trl#3-create-and-prepare-the-dataset

作者使用了 HuggingFaceH4/no_robots 数据集,这是一个包含 10,000 条指令和样本的高质量数据集,并且经过了高质量的数据标注。这些数据可用于有监督微调(SFT),使语言模型更好地遵循人类指令。no_robots 数据集以 OpenAI 发表的 InstructGPT 论文中描述的人类指令数据集为原型,并且主要由单句指令组成。

{"messages": [{"role": "system", "content": "You are..."}, {"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]}``   ``{"messages": [{"role": "system", "content": "You are..."}, {"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]}``   ``{"messages": [{"role": "system", "content": "You are..."}, {"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]}

no_robots 数据集中的 10,000 个样本,被分为 9,500 个训练样本和 500 个测试样本,其中有些样本不包含 system 信息。作者使用 datasets 库加载数据集,添加了缺失的 system 信息,并将它们保存到单独的 json 文件中。示例代码如下所示:

from datasets import load_dataset``   ``   ``# Convert dataset to OAI messages``   ``system_message = """You are Llama, an AI assistant created by Philipp to be helpful and honest. Your knowledge spans a wide range of topics, allowing you to engage in substantive conversations and provide analysis on complex subjects."""``   ``   ``   ``def create_conversation(sample):``   `    `if sample["messages"][0]["role"] == "system":``   `        `return sample`    `else:``   `      `sample["messages"] = [{"role": "system", "content": system_message}] + sample["messages"]``   `      `return sample``   ``   ``# Load dataset from the hub``   ``dataset = load_dataset("HuggingFaceH4/no_robots")``   ``   ``   ``# Add system message to each conversation``   ``columns_to_remove = list(dataset["train"].features)``   ``columns_to_remove.remove("messages")``   ``dataset = dataset.map(create_conversation, remove_columns=columns_to_remove,batched=False)``   ``   ``   ``# Filter out conversations which are corrupted with wrong turns, keep which have even number of turns after adding system message``   ``dataset["train"] = dataset["train"].filter(lambda x: len(x["messages"][1:]) % 2 == 0)``   ``dataset["test"] = dataset["test"].filter(lambda x: len(x["messages"][1:]) % 2 == 0)``   ``   ``   ``# save datasets to disk``   ``dataset["train"].to_json("train_dataset.json", orient="records", force_ascii=False)``   ``dataset["test"].to_json("test_dataset.json", orient="records", force_ascii=False)

使用 PyTorch FSDP、Q-Lora 和 SDPA 来微调 LLM

接下来使用 PyTorch FSDP、Q-Lora 和 SDPA 对大语言模型进行微调。作者是在分布式设备中运行模型,因此需要使用 torchrun 和 python 脚本启动训练。

作者编写了 run_fsdp_qlora.py 脚本,其作用是从磁盘加载数据集、初始化模型和分词器并开始模型训练。脚本使用 trl 库中的 SFTTrainer 来对模型进行微调。

SFTTrainer 能够让对开源大语言模型的有监督微调更加容易上手,具体来说有以下几点:

  • 格式化的数据集,包括格式化的多轮会话和指令(已使用)

  • 只对完整的内容进行训练,忽略只有 prompts 的情况(未使用)

  • 打包数据集,提高训练效率(已使用)

  • 支持参数高效微调技术,包括 Q-LoRA(已使用)

  • 为会话级任务微调初始化模型和分词器(未使用,见下文)

注意:作者使用的是类似于 Anthropic/Vicuna 的聊天模板,设置了「用户」和「助手」角色。这样做是因为基础 Llama 3 中的特殊分词器(<|begin_of_text|> 及 <|reserved_special_token_XX|>)没有经过训练。

这意味着如果要在模板中使用这些分词器,还需要对它们进行训练,并更新嵌入层和 lm_head,对内存会产生额外的需求。如果使用者有更多的算力,可以修改 run_fsdp_qlora.py 脚本中的 LLAMA_3_CHAT_TEMPLATE 环境变量。

在配置参数方面,作者使用了新的 TrlParser 变量,它允许我们在 yaml 文件中提供超参数,或者通过明确地将参数传递给 CLI 来覆盖配置文件中的参数,例如 —num_epochs 10。以下是在 4x A10G GPU 或 4x24GB GPU 上微调 Llama 3 70B 的配置文件。

%%writefile llama_3_70b_fsdp_qlora.yaml``# script parameters``   ``model_id: "meta-llama/Meta-Llama-3-70b" # Hugging Face model id``   ``dataset_path: "."                      # path to dataset``   ``max_seq_len:  3072 # 2048              # max sequence length for model and packing of the dataset``   ``# training parameters``   ``output_dir: "./llama-3-70b-hf-no-robot" # Temporary output directory for model checkpoints``   ``report_to: "tensorboard"               # report metrics to tensorboard``   ``learning_rate: 0.0002                  # learning rate 2e-4``   ``lr_scheduler_type: "constant"          # learning rate scheduler``   ``num_train_epochs: 3                    # number of training epochs``   ``per_device_train_batch_size: 1         # batch size per device during training``   ``per_device_eval_batch_size: 1          # batch size for evaluation``   ``gradient_accumulation_steps: 2         # number of steps before performing a backward/update pass``   ``optim: adamw_torch                     # use torch adamw optimizer``   ``logging_steps: 10                      # log every 10 steps``   ``save_strategy: epoch                   # save checkpoint every epoch``   ``evaluation_strategy: epoch             # evaluate every epoch``   ``max_grad_norm: 0.3                     # max gradient norm``   ``warmup_ratio: 0.03                     # warmup ratio``   ``bf16: true                             # use bfloat16 precision``   ``tf32: true                             # use tf32 precision``   ``gradient_checkpointing: true           # use gradient checkpointing to save memory``   ``# FSDP parameters: https://huggingface.co/docs/transformers/main/en/fsdp``   ``fsdp: "full_shard auto_wrap offload" # remove offload if enough GPU memory``   ``fsdp_config:``   `  `backward_prefetch: "backward_pre"``   `  `forward_prefetch: "false"``   `  `use_orig_params: "false"

注意:训练结束时,GPU 内存使用量会略有增加(约 10%),这是因为模型保存所带来的开销。所以使用时,请确保 GPU 上有足够的内存来保存模型。

在启动模型训练阶段,作者使用 torchrun 来更加灵活地运用样本,并且易于被调整,就像 Amazon SageMaker 及 Google Cloud Vertex AI 一样。

对于 torchrun 和 FSDP,作者需要对环境变量 ACCELERATE_USE_FSDP 和 FSDP_CPU_RAM_EFFICIENT_LOADING 进行设置,来告诉 transformers/accelerate 使用 FSDP 并以节省内存的方式加载模型。

注意:如果想不使用 CPU offloading 功能,需要更改 fsdp 的设置。这种操作只适用于内存大于 40GB 的 GPU。

本文使用以下命令启动训练:

!ACCELERATE_USE_FSDP=1 FSDP_CPU_RAM_EFFICIENT_LOADING=1 torchrun --nproc_per_node=4 ./scripts/run_fsdp_qlora.py --config llama_3_70b_fsdp_qlora.yaml

预期内存使用情况:

  • 使用 FSDP 进行全微调需要约 16 块 80GB 内存的 GPU

  • FSDP+LoRA 需要约 8 块 80GB 内存的 GPU

  • FSDP+Q-Lora 需要约 2 块 40GB 内存的 GPU

  • FSDP+Q-Lora+CPU offloading 技术需要 4 块 24GB 内存的 GPU,以及一块具备 22 GB 内存的 GPU 和 127 GB 的 CPU RAM,序列长度为 3072、batch 大小为 1。

在 g5.12xlarge 服务器上,基于包含 1 万个样本的数据集,作者使用 Flash Attention 对 Llama 3 70B 进行 3 个 epoch 的训练,总共需要 45 小时。每小时成本为 5.67 美元,总成本为 255.15 美元。这听起来很贵,但可以让你在较小的 GPU 资源上对 Llama 3 70B 进行微调。

如果我们将训练扩展到 4x H100 GPU,训练时间将缩短至大约 125 小时。如果假设 1 台 H100 的成本为 5-10 美元 / 小时,那么总成本将在 25-50 美元之间。

我们需要在易用性和性能之间做出权衡。如果能获得更多更好的计算资源,就能减少训练时间和成本,但即使只有少量资源,也能对 Llama 3 70B 进行微调。对于 4x A10G GPU 而言,需要将模型加载到 CPU 上,这就降低了总体 flops,因此成本和性能会有所不同。

注意:在作者进行的评估和测试过程中,他注意到大约 40 个最大步长(将 80 个样本堆叠为长度为三千的序列)就足以获得初步结果。40 个步长的训练时间约为 1 小时,成本约合 5 美元。

可选步骤:将 LoRA 的适配器融入原始模型

使用 QLoRA 时,作者只训练适配器而不对整个模型做出修改。这意味着在训练过程中保存模型时,只保存适配器权重,而不保存完整模型。

如果使用者想保存完整的模型,使其更容易与文本生成推理器一起使用,则可以使用 merge_and_unload 方法将适配器权重合并到模型权重中,然后使用 save_pretrained 方法保存模型。这将保存一个默认模型,可用于推理。

注意:CPU 内存需要大于 192GB。

#### COMMENT IN TO MERGE PEFT AND BASE MODEL ####``   ``# from peft import AutoPeftModelForCausalLM``   ``   ``   ``# # Load PEFT model on CPU``   ``# model = AutoPeftModelForCausalLM.from_pretrained(``   ``#     args.output_dir,``   ``#     torch_dtype=torch.float16,``   ``#     low_cpu_mem_usage=True,``   ``# )``   ``# # Merge LoRA and base model and save``   ``# merged_model = model.merge_and_unload()``   ``# merged_model.save_pretrained(args.output_dir,safe_serialization=True, max_shard_size="2GB")``   

模型测试和推理

训练完成后,我们要对模型进行评估和测试。作者从原始数据集中加载不同的样本,并手动评估模型。评估生成式人工智能模型并非易事,因为一个输入可能有多个正确的输出。阅读《评估 LLMs 和 RAG,一个使用 Langchain 和 Hugging Face 的实用案例》可以了解到关于评估生成模型的相关内容。

文章地址:https://www.philschmid.de/evaluate-llm

import torch``from peft import AutoPeftModelForCausalLM``from transformers import AutoTokenizer``   ``   ``peft_model_id = "./llama-3-70b-hf-no-robot"``   ``   ``   ``# Load Model with PEFT adapter``   ``model = AutoPeftModelForCausalLM.from_pretrained(``   `  `peft_model_id,``   `  `torch_dtype=torch.float16,``   `  `quantization_config= {"load_in_4bit": True},``   `  `device_map="auto"``   ``)``   ``tokenizer = AutoTokenizer.from_pretrained(peft_model_id)``   

接下来加载测试数据集,尝试生成指令。

如何学习大模型 AGI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

-END-


👉AGI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉AGI大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉AGI大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值