DeepSeek + Ollama + AnythingLLM实现本地化部署和构建自己的知识库

安装配置步骤:

一、安装Ollama

二、下载DeepSeek模型

三、安装AnythingLLM并配置

(鉴于很多朋友无法下载ollama和anythingllm,这里给大家整理好了安装包,扫描领取即可↓↓↓↓)
在这里插入图片描述

一、安装Ollama

1. Ollama简介

  Ollama 是一个开源项目,旨在简化和优化使用大型语言模型(LLM)的体验。它为开发者提供了一个用户友好的界面和工具,使他们能够快速地下载、运行和与各种预训练的模型进行交互。Ollama 的核心目标是降低使用复杂大型语言模型的门槛,无论是用于个人项目、研究还是产品开发。它相当于一个“本地版ChatGPT”,但完全离线、可定制,且支持私有化部署。

Ollama 提供的功能包括但不限于:

  1. 模型管理:用户可以方便地搜索、下载和管理多种语言模型。

  2. 命令行接口:提供简单的命令行工具,使得与模型的交互更加高效。

  3. 集成支持:Ollama 可以与其他开发工具和框架进行集成,方便在不同的应用场景下使用语言模型。

  4. 可扩展性:用户能够根据自己的需求定制和扩展模型的功能。

在当今自然语言处理的快速发展中,Ollama 为开发者提供了一种简化的解决方案,使他们能够快速采用和实施先进的语言学习技术。

2. 下载安装

Ollama下载地址:https://ollama.com

打开网址,进入下载页面,如下:

点击“Download”,进入选择页面,选择合适的版本

或者直接拷贝完整下载路径:

https://github.com/ollama/ollama/releases/latest/download/OllamaSetup.exe

用其他下载软件(如:迅雷)进行下载。

下载完后,点击“OllamaSetup.exe”安装。

安装完后,cmd进入命令提示符系统或Powershell,输入命令:ollama -h. 显示如下信息,说明安装成功。

3. 几个Ollama常用的命令:

1、列出本地可用的模型列表:ollama list

2、拉取模型:ollama pull model_name

3、启动模型:ollama run model_name

4、查看模型信息:ollama show model_name

5、删除指定模型:ollama rm model_name

二、下载DeepSeek模型

在浏览器中打开ollama的模型仓库网页:

https://ollama.com/library

根据需要和硬件配置条件,选择合适的模型大小版本,

如:deepseek-r1:1.5b

复制右上角的命令文本:ollama run deepseek-r1:1.5b

通过cmd或Powershell打开命令提示符系统界面,将命令文本输入命令提示符界面。按回车,Ollama开始下载模型文件:

下载完成后,显示如下:

此时,可输入你需要提问的问题。

关闭命令提示符系统后,再次输入命令:ollama run deepseek-r1:1.5b 可以重新打开Ollama。

三、安装AnythingLLM并配置

1. AnythingLLM简介

 **AnythingLLM** 是一个开源的AI聊天系统,旨在帮助用户构建个性化的私人ChatGPT。它支持多种文档格式,并具备以下核心功能:
  • 智能聊天:自动处理文档的上下文分析和内容整理,确保文件间的上下文不会混淆。

  • 自定义AI代理:允许用户为每个工作区创建不同的AI代理,如专门处理Python代码或PDF文档的代理。

  • 多模式支持:兼容免费的开源模型和需要付费的商用模型,提供极大的灵活性。

  • 团队协作:支持通过Docker容器多用户同时使用,适合团队开发或公司内部使用。

  • 丰富的API接口:允许开发者轻松集成AnythingLLM到现有应用中,如构建企业内部知识库或自定义客服。

此外,AnythingLLM的安装和使用过程简单,支持Docker部署,使得用户可以快速搭建私人ChatGPT系统。

日常工作中,我们经常需要处理大量文档和资料:

  • 产品文档、技术文档散落在各处,查找费时费力

  • 新人入职培训需要反复讲解相同的内容

  • 客户咨询的问题高度重复,但每次都要人工回答

  • 公司内部知识难以沉淀和复用

  • 各类参考资料缺乏统一管理和快速检索的方案

传统的文档管理系统只能按目录存储和搜索关键词,而商业AI助手又无法导入私有数据。这时,一个能将文档智能化并支持对话的系统就显得尤为重要。AnythingLLM正是为解决这些痛点而生。

AnythingLLM支持处理多种类型的文档和内容:

  • 多格式支持:可以导入PDF、Word、TXT等常见文档格式

  • 网页抓取:直接输入URL即可抓取网页内容

  • 智能分割:自动将长文档分割成适合向量化的片段

  • 元数据提取:自动提取文档的标题、作者等信息

  • 增量更新:支持文档的增量更新,无需重新处理全部内容

  • 大规模处理:能高效处理GB级别的文档集合

这种灵活的文档处理能力让你可以轻松将各类知识资料导入系统,构建起完整的知识库。

2. 下载安装

打开官网地址:https://anythingllm.com/desktop,根据自己的系统选择下载的版本。

安装过程中,如弹窗提示错误信息:

Error:Failed to download the local LLM libraries,可忽略

3. AnythingLLM配置

下载安装后,打开AnythingLLM软件界面,显示如下:

点击“Get started”.

选择Ollama,AnythingLLM会自动检测本地部署的模型.

点击右侧下一步箭头:“>”

创建自定义工作区,输入工作区的名称。

点击配置按钮,如下图所示:

在“人工智能提供商->LLM首选项”页面,配置为Ollama, 模型选择deepseek-r1:1.5b.

选中工作区,可以上传本地知识库文档,或对工作区进行单独配置。如下所示:

上传知识库文档界面

选中文档,点击“Move to Workspace”按钮,将文档移动到工作区

保存并嵌入,对文档进行切分和词向量化

完成后,点击图钉按钮,将这篇文档设置为当前对话的背景文档。

配置好后,即可输入问题,进行交互。

(鉴于很多朋友无法下载ollama和anythingllm,这里给大家整理好了安装包,扫描领取即可↓↓↓↓)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值