最大上升子序列和(Maximum Ascending Subsequence Sum,简称MASS)是一种经典的动态规划问题。在MASS问题中,给定一个正整数序列,求最长的上升子序列,并且要求这个上升子序列的和最大。
先看题目:
一个数的序列 bi,当 b1<b2<…<bS 的时候,我们称这个序列是上升的。
对于给定的一个序列(a1,a2,…,aN),我们可以得到一些上升的子序列(ai1,ai2,…,aiK),这里1≤i1<i2<…<iK≤N。
比如,对于序列(1,7,3,5,9,4,8),有它的一些上升子序列,如(1,7),(3,4,8)等等。
这些子序列中和最大为18,为子序列(1,3,5,9)的和。
你的任务,就是对于给定的序列,求出最大上升子序列和。
注意,最长的上升子序列的和不一定是最大的,比如序列(100,1,2,3)的最大上升子序列和为100,而最长上升子序列为(1,2,3)。
输入格式
输入的第一行是序列的长度N。
第二行给出序列中的N个整数,这些整数的取值范围都在0到10000(可能重复)。
输出格式
输出一个整数,表示最大上升子序列和。
数据范围
1≤N≤1000
输入样例:
7
1 7 3 5 9 4 8
输出样例:
18
老规矩,先给代码
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n;
int w[N];
int f[N];
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i ++ ) scanf("%d", &w[i]);
int res = 0;
for (int i = 0; i < n; i ++ )
{
f[i] = w[i];
for (int j = 0; j < i; j ++ )
if (w[i] > w[j])
f[i] = max(f[i], f[j] + w[i]);
res = max(res, f[i]);
}
printf("%d\n", res);
return 0;
}
1、w[N]数组代表每个点的价值,f[N]是题解
2、这里要我们求的是和的最大值,所以我们得先求出每一个上升的子序列的和,再比较
3、f[i] = w[i]是从当前点开始,得到该点的值,再向后遍历,首先要求是后面的数大于当前点,然后再比较两个数值的大小
4、再依次比较以每个数为起点的上升子序列和