以下是一个使用PyTorch实现的带有卷积注意力机制和深监督方法的U-Net模型的代码示例:
```python
import torch
import torch.nn as nn
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ConvBlock, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class AttentionBlock(nn.Module):
def __init__(self, channels):
super(AttentionBlock, self).__init__()
self.query_conv = nn.Conv2d(channels, channels // 8, kernel_size=1)
self.key_conv = nn.Conv2d(channels, channels // 8, kernel_size=1)
self.value_conv = nn.Conv2d(channels, channels, kernel_size=1)
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
batch_size, channels, height, width = x.size()
proj_query = self.query_conv(x).view(batch_size, -1, height * width).permute(0, 2, 1)
proj_key = self.key_conv(x).view(batch_size, -1, height * width)
energy = torch.bmm(proj_query, proj_key)
attention = torch.softmax(energy, dim=-1)
proj_value = self.value_conv(x).view(batch_size, -1, height * width)
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(batch_size, channels, height, width)
out = self.gamma * out + x
return out
class UNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(UNet, self).__init__()
self.encoder1 = ConvBlock(in_channels, 64)
self.encoder2 = ConvBlock(64, 128)
self.encoder3 = ConvBlock(128, 256)
self.encoder4 = ConvBlock(256, 512)
self.center = ConvBlock(512, 1024)
self.decoder4 = ConvBlock(1024, 512)
self.decoder3 = ConvBlock(512, 256)
self.decoder2 = ConvBlock(256, 128)
self.decoder1 = ConvBlock(128, 64)
self.attention4 = AttentionBlock(512)
self.attention3 = AttentionBlock(256)
self.attention2 = AttentionBlock(128)
self.output = nn.Sequential(
nn.Conv2d(64, out_channels, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
enc1 = self.encoder1(x)
enc2 = self.encoder2(nn.MaxPool2d(2)(enc1))
enc3 = self.encoder3(nn.MaxPool2d(2)(enc2))
enc4 = self.encoder4(nn.MaxPool2d(2)(enc3))
center = self.center(nn.MaxPool2d(2)(enc4))
dec4 = self.decoder4(torch.cat([enc4, self.attention4(center)], dim=1))
dec3 = self.decoder3(torch.cat([enc3, self.attention3(dec4)], dim=1))
dec2 = self.decoder2(torch.cat([enc2, self.attention2(dec3)], dim=1))
dec1 = self.decoder1(torch.cat([enc1, dec2], dim=1))
return self.output(dec1)
```
这段代码实现了具有卷积注意力机制和深监督方法的U-Net模型。模型包括编码器和解码器部分,以及注意力模块。编码器部分由4个卷积块组成,解码器部分也由4个卷积块组成。注意力模块用于增强模型对重要特征的关注。输出层使用一个卷积层和Sigmoid激活函数。
希望这段代码能满足你的需求!如果还有其他问题,请随时提问。