1.背景介绍
1.1 从Q-learning到深度Q-learning
作为一种强化学习算法,Q-learning自从1989年由Watkins提出以来,已被广泛应用于各种决策问题的解决。然而,传统的Q-learning在处理高维、连续的状态空间时效果并不理想。这是因为传统的Q-learning通常使用查找表来存储和更新状态-动作值(Q-value),在状态空间很大或连续时,查找表的方法会遇到“维度诅咒”的问题。为了解决这个问题,2013年,Google’s DeepMind团队提出了深度Q-learning(DQN)算法,通过深度神经网络近似Q值函数,成功地将深度学习和强化学习相结合。
1.2 智能家居:挑战与机遇
智能家居是现代科技的一个重要应用领域,它的目标是通过自动化技术、物联网技术和人工智能技术,提高家庭生活的安全性、舒适性和便利性。然而,实现智能家居的自动化控制并非易事,因为家庭环境具有高度复杂和不确定性,需要处理大量的决策问题,例如温度控制、照明控制、安全监控等。深度Q-learning作为一种强大的决策学习方法,具有很大的潜力应用于智能家居的自动化控制。