1. 背景介绍
近年来,深度学习在各个领域取得了巨大的成功,但在处理图结构数据方面,传统的深度学习方法却面临着挑战。这是因为图结构数据具有复杂的拓扑结构和节点之间的依赖关系,而传统的深度学习模型,如卷积神经网络,难以有效地捕捉这些信息。为了解决这个问题,图神经网络(Graph Neural Networks, GNNs)应运而生。
GNNs 是一种专门用于处理图结构数据的深度学习模型,它通过将图的拓扑结构和节点特征信息结合起来,能够有效地学习节点的表示,从而进行节点分类、链接预测、图分类等任务。GNNs 的出现,为处理图结构数据打开了新的思路,并已经在社交网络分析、推荐系统、药物发现等领域取得了显著的成果。
1.1 图结构数据的特点
图结构数据广泛存在于现实世界中,例如社交网络、生物分子网络、交通网络等。与传统的欧几里得空间数据不同,图结构数据具有以下特点:
- 非欧结构: 图的节点之间没有固定的顺序,不像图像中的像素点那样排列整齐。
- 复杂的拓扑结构: 图的节点之间存在着复杂的连接关系,这种关系可以是无向的、有向的,也可以是加权的。
- 节点特征: 每个节点都可能包含一些特征