1. 背景介绍
1.1. 从关联到因果:机器学习的新挑战
近年来,机器学习在各个领域取得了瞩目的成就,然而,传统的机器学习方法主要关注数据间的关联性,而忽略了因果关系。例如,我们可以训练一个模型预测冰淇淋销量与游泳人数之间的关系,但并不能确定是冰淇淋销量导致了游泳人数的增加,还是游泳人数的增加导致了冰淇淋销量的增加,或者两者之间存在其他共同的影响因素。
因果推理与因果学习致力于解决这个问题,它旨在识别变量之间的因果关系,并利用这些关系进行预测、决策和解释。因果推理与因果学习不仅是机器学习领域的新挑战,也是推动人工智能走向更高层次的关键。
1.2. 因果推理与因果学习的应用领域
因果推理与因果学习在许多领域都有着广泛的应用,例如:
- 医疗健康: 识别疾病的致病因素,评估药物治疗效果,优化医疗方案。
- 经济学: 分析经济政策的影响,预测市场趋势,制定投资策略。
- 社会科学: 研究社会现象的成因,评估政策干预的效果,理解人类行为。
- 人工智能: 构建更智能、更可靠的 AI 系统&