【大模型应用开发 动手做AI Agent】语言交互能力
1.背景介绍
在人工智能领域,语言交互能力是大模型应用开发中的一个关键组成部分。随着自然语言处理(NLP)技术的不断进步,AI Agent在理解和生成自然语言方面取得了显著的进展。大模型,如GPT-3和BERT,已经展示了其在多种语言任务中的卓越表现。这些模型不仅能够理解复杂的语言结构,还能生成高质量的文本,从而使得AI Agent在各种应用场景中变得更加智能和实用。
1.1 自然语言处理的演变
自然语言处理技术经历了从规则驱动到统计模型,再到深度学习模型的演变。早期的NLP系统依赖于手工编写的规则和词典,随后引入了基于统计的方法,如隐马尔可夫模型(HMM)和条件随机场(CRF)。近年来,深度学习模型,特别是基于Transformer架构的大模型,彻底改变了NLP领域。
1.2 大模型的崛起
大模型的崛起,尤其是基于Transformer架构的模型,如BERT、GPT-3等,标志着NLP技术的一个重要里程碑。这些模型通过大规模的预训练和微调,能够在多种语言任务中表现出色。它们不仅能够理解上下文,还能生成连贯的文本,从而使得