潜在扩散模型Latent Diffusion Model原理与代码实例讲解
关键词:
- 潜在扩散模型
- 潜在空间
- 扩散过程
- 生成模型
- 图像生成
1. 背景介绍
1.1 问题的由来
在深度学习领域,特别是图像生成和处理任务中,潜在扩散模型(Latent Diffusion Models,LDMs)作为一种新型生成模型,受到了广泛关注。随着大规模预训练模型的涌现,比如DALL-E、Stable Diffusion和LyCORIS,人们对于能够生成高质量、多样化的图像以及文本的能力有了更高的期待。潜在扩散模型正是为了满足这一需求而提出的,它通过在潜在空间中模拟扩散过程,从而生成具有丰富细节和多样性的样本。
1.2 研究现状
潜在扩散模型在近年来的研究中展现出强大的生成能力,尤其是在处理高维数据集时。它们通过引入时间步长的概念,使得模型能够学习到从噪声到复杂结构的转换过程,从而生成高质量的图像、声音或者其他类型的信号。这类模型通常结合了变分自编码器(Variational Autoencoder,VAE)、自注意力机制&