关于直肋的效率

效率表达式 η = t h ( m H ) m H \eta =\frac{th(mH)}{mH} η=mHth(mH),其中 m = h P λ A m=\sqrt{\frac{hP}{\lambda A}} m=λAhP
假如固定其他条件,当λ变大,mH减小,对 f ( x ) = t h ( x ) x f(x)=\frac{th(x)}{x} f(x)=xth(x)进行求导,得到导数为 4 x − e 2 x + e − 2 x ( e x + e − x ) 2 \frac{4x-e^{2x}+e^{-2x}}{(e^x+e^{-x})^2} (ex+ex)24xe2x+e2x,这个的分子的导数小于0,分子的零点明显为0,因此在x>0时该导数为负,因此随mH的减小,效率提升。
可以得到如下结论:
效率随材料的导热系数的增大而增大
效率随对流换热系数的增大而减小
效率随肋片的增高而减小
对于截面为圆柱形的,效率随半径的增大而增大
肋片越矮胖,肋片各个部分的温度越趋近于肋根温度,效率越高。

可以如此理解,由效率表达式上面的分子在x趋近于∞时为1,可以看做一个反比例函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bhZ567

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值