效率表达式
η
=
t
h
(
m
H
)
m
H
\eta =\frac{th(mH)}{mH}
η=mHth(mH),其中
m
=
h
P
λ
A
m=\sqrt{\frac{hP}{\lambda A}}
m=λAhP
假如固定其他条件,当λ变大,mH减小,对
f
(
x
)
=
t
h
(
x
)
x
f(x)=\frac{th(x)}{x}
f(x)=xth(x)进行求导,得到导数为
4
x
−
e
2
x
+
e
−
2
x
(
e
x
+
e
−
x
)
2
\frac{4x-e^{2x}+e^{-2x}}{(e^x+e^{-x})^2}
(ex+e−x)24x−e2x+e−2x,这个的分子的导数小于0,分子的零点明显为0,因此在x>0时该导数为负,因此随mH的减小,效率提升。
可以得到如下结论:
效率随材料的导热系数的增大而增大
效率随对流换热系数的增大而减小
效率随肋片的增高而减小
对于截面为圆柱形的,效率随半径的增大而增大
肋片越矮胖,肋片各个部分的温度越趋近于肋根温度,效率越高。
可以如此理解,由效率表达式上面的分子在x趋近于∞时为1,可以看做一个反比例函数