Day45: 300.最长递增子序列 674. 最长连续递增序列 718. 最长重复子数组

300. 最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的

子序列

。 

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104

进阶:

  • 你能将算法的时间复杂度降低到 O(n log(n)) 吗?

思路:

动态规划五部曲:

1.dp[i]的定义

dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

2.状态转移方程

位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。

所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

3.初始化

每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

为什么不仅仅设置dp[0]=1?

因为在之前有比当前nums[i]小的数时,dp[i]才被赋值,如果前面都没比nums[i]小的数,dp[i]就等于初始值,这个初始值应该为1,因为此时以Nums[i]结尾的子串长度为1

if(nums[i]>nums[j])
            dp[i]=Math.max(dp[i],dp[j]+1);

4.确定遍历顺序

dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历

5.举例

代码参考:

class Solution {
    public int lengthOfLIS(int[] nums) {
      int[] dp = new int[nums.length];
      //初始化
      for(int i=0;i<nums.length;i++){
        dp[i]=1;
      }
      for(int i=1;i<nums.length;i++){
        for(int j=0;j<i;j++){
            if(nums[i]>nums[j]){
                dp[i]=Math.max(dp[i],dp[j]+1);            }
        }
      }
      //取最大长度
      int result=0;
      for(int i=0;i<nums.length;i++){
        result=Math.max(result,dp[i]);
      }
      return result;
    }
}

674. 最长连续递增序列

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 rl < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。 

示例 2:

输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。

提示:

  • 1 <= nums.length <= 104
  • -109 <= nums[i] <= 109

思路:

与上题相比,本题多了一个要求:连续!

动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义

dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i]。

2.确定递推公式

如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。

即:dp[i] = dp[i - 1] + 1;

3.dp数组如何初始化

以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。

所以dp[i]应该初始1;

4.确定遍历顺序

dp[i + 1]依赖dp[i],所以一定是从前向后遍历

5.举例

代码参考:

class Solution {
    public int findLengthOfLCIS(int[] nums) {
 int[] dp =new int[nums.length];
 //初始化
 for(int i=0;i<nums.length;i++){
    dp[i]=1;
 }
 //
 int result=1;
 for(int i=1;i<nums.length;i++){
    if(nums[i]>nums[i-1]){
        dp[i]=dp[i-1]+1;
        result=Math.max(result,dp[i]);
    }
 }
 return result;
    }
}

718. 最长重复子数组

给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 

示例 1:

输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3
解释:长度最长的公共子数组是 [3,2,1] 。

示例 2:

输入:nums1 = [0,0,0,0,0], nums2 = [0,0,0,0,0]
输出:5

提示:

  • 1 <= nums1.length, nums2.length <= 1000
  • 0 <= nums1[i], nums2[i] <= 100

思路:

动态规划五部曲:

1.确定dp数组(dp table)以及下标的含义

dp[i][j] :nums1[i]和nums2[j]的最大"公共后缀""子数组长度。此题dp的定义保证了所求得的dp值反映了连续的子数组匹配,即nums1[i]和nums2[j]的末尾部分是匹配的。 ​​​​​​​

为什么用二维数组表示?

因为两个子串重复子串的位置在两个子串中可能不同

2.确定递推公式

当A[i ] 和B[j ]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;

​​​​​​​但此题中,如果尾部不相等,表明没有公共后缀(从后向前看),所以dp[i][j] = 0。

3.dp数组如何初始化

dp[i][0] 和dp[0][j]都要初始化

   int result=0;
      for(int i=0;i<nums1.length;i++){
        if(nums1[i]==nums2[0]){
            dp[i][0]=1;
        }
            result=Math.max(result,dp[i][0]);
      }
     for(int i=0;i<nums2.length;i++){
        if(nums2[i]==nums1[0]){
            dp[0][i]=1;
        }
            result=Math.max(result,dp[0][i]);
      }

4.确定遍历顺序

外层for循环遍历A,内层for循环遍历B,互换也行

5.举例

代码:

注意这里 是返回两个数组中 公共的 、长度最长的子数组的长度 。子数组是要求连续的,故dp[i][j]!=dp[i-1][j-1]时,dp[i-1][j-1]=0

class Solution {
    public int findLength(int[] nums1, int[] nums2) {
   int[][] dp=new int[nums1.length][nums2.length];
   //初始化
    int result=0;
  for(int i=0;i<nums1.length;i++){
  if(nums1[i]==nums2[0])  {dp[i][0]=1;result=1;}
  }
  for(int i=0;i<nums2.length;i++){
    if(nums2[i]==nums1[0]){ dp[0][i]=1;result=1;}
  }
 
   for(int i=1;i<nums1.length;i++){
    for(int j=1;j<nums2.length;j++){
        if(nums1[i]==nums2[j]){
            dp[i][j]=dp[i-1][j-1]+1;
            result=Math.max(result,dp[i][j]);
        }
    }
   }
   return result;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值