2024年最全2024大数据面试题+附答案(1),国内一线互联网公司面试题汇总

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  1. Spark 和 Hadoop的区别是什么?
  2. Spark 中的 RDD 是什么?
  3. RDD 可以持久化,具体是怎么实现的?
  4. Spark 中的累加器是什么?
  5. Spark 中的广播变量是什么?
  6. 什么是 Spark SQL?
  7. Spark Streaming 和 Spark 的区别是什么?
  8. 什么是 Spark MLlib?
  9. Spark 中的 GraphX 是什么?
  10. 如何调优 Spark 作业?
  11. Spark 中的 shuffle 是什么?
  12. Spark 作业的主要两个因素是什么?
  13. 什么是 Spark Standalone?
  14. Spark 中的 master 和 worker 是什么?
  15. Spark 中的 Executor 和 Driver 是什么?
  16. 什么是 Spark 运行模式?
  17. 如何在 Spark 中设置运行模式?
  18. 什么是线程池?
  19. Spark 中通过什么机制实现数据共享?
  20. Spark 中的数据分区是什么?
  21. Spark 中的算子都有哪些类型?
  22. 什么是 DAG?
  23. 如何使用 Spark 进行数据清洗?
  24. 什么是 Spark 缓存?
  25. Spark 中的 coalesce 和 repartition 联系和区别是什么?
  26. Spark 中的 map 和 flatMap 区别是什么?
  27. Spark 中的 filter 和 where 的区别是什么?
  28. Spark 中的 join 和 cogroup 区别是什么?
  29. Spark 是否支持多语言?
  30. Spark 支持哪些文件格式?
  31. Spark 中的并行度怎么设置?
  32. 什么是 Spark Checkpoint?
  33. 如何调试 Spark 作业?
  34. Spark 中的事件监听器是什么?
  35. 如何使用 Spark 进行机器学习?
  36. Spark 是否支持实时流分析?
  37. Spark 中如何控制并发度?
  38. Spark 中的 reduceByKey 和 groupByKey 的区别是什么?
  39. 什么是 Spark Scheduler?
  40. Spark 中的任务调度是如何完成的?
  41. Spark 中如何使用过滤器?
  42. Spark 中数据接收器是什么?
  43. 如何使用 Spark 进行数据聚合操作?
  44. Spark 中的数据源是什么?
  45. Spark 中 RDD 的 partition 分配机制是什么?
  46. 如何使用 Spark 进行数据转换操作?
  47. Spark 中的串行化和反串行化是什么?
  48. Spark 中的 RDD 是如何实现容错机制的?
  49. 什么是 Spark 整合 YARN?
Spark 答案
  1. Spark是一个开源的大数据处理引擎,使用高效的数据处理方式,支持多种语言和API。
  2. Spark和Hadoop的区别主要在于内部的数据处理引擎不同,虽然二者都可以处理大数据,但Spark一般更快,更适合处理迭代式算法,而Hadoop则更适合处理批量处理数据。
  3. RDD(Resilient Distributed Datasets,弹性分布式数据集)是Spark中一个关键的数据结构,它代表了一个被分区的只读数据集。RDD可以缓存到内存中,因此可以在多个任务中重复使用。
  4. RDD持久化是指将RDD的内容固定到内存或磁盘上,以便在需要时重新使用。RDD可以通过persist()方法实现持久化,也可以利用cache()方法将RDD缓存到内存中。
  5. 累加器是Spark中另一个重要的概念,它是可写入的变量,用于在所有的分区之间并行聚合计算。Spark支持多种类型的累加器,包括基本类型,元组和列表等。
  6. 广播变量是Spark中一种特殊的变量类型,用于将一个只读变量广泛分发到所有工作节点上,以便在计算期间重复使用。广播变量是通过使用broadcast()方法实现的。
  7. Spark SQL是用于处理结构化数据的模块,它提供了SQL查询接口,可以操作包括JSON、Parquet、Hive表等多种数据源,支持SQL查询、聚合、连接等常见操作。
  8. Spark Streaming是Spark提供的流处理模块,可以在实时中运行,支持高度并发,提供灵活的流处理API。
  9. Spark MLlib是Spark中的一个机器学习库,提供了各种机器学习算法和工具,可以处理分类、回归、聚类、特征提取等任务。
  10. Spark中的GraphX是对图计算的支持,它可以对无向图和有向图进行操作。
  11. 调优Spark作业需要注意很多方面,包括数据源和存储、算法设计、性能优化等。其中一些重要的策略包括选择适当的RDD和内存缓存机制,以及通过合理的调度控制和并发程度来管理资源。
  12. Shuffle是Spark中一个特殊的数据转换过程,它指的是将数据重新分布到不同的节点上以便于进一步处理。Shuffle是Spark中非常耗时的操作之一,通常需要在任务之前或之后进行优化。
  13. 当Spark作业执行时,它可以分为任务和阶段两个主要部分。任务是指一组运行在一个节点上的操作,而阶段则是一组任务的组合,形成有序的执行流程,以实现大规模数据处理。
  14. Spark Standalone是一种Spark运行模式,它是Spark的内置集群管理器。它可以在单个计算机上运行,也可以在多台计算机的集群上运行。
  15. 在Spark中,master是Spark Standalone集群的管理节点,用于协调集群中所有的工作节点。worker则是集群中的计算节点,它们负责执行Spark任务。
  16. 在Spark中,Executor是执行Spark任务的进程,而Driver是运行Spark作业的进程。Driver负责协调执行任务的Executor、监控作业的执行,以及向用户报告结果等。
  17. Spark的运行模式主要包括Spark Standalone、Apache Mesos和Apache YARN。其中,Spark Standalone是Spark的内置集群管理器,可以在单个计算机上运行,也可以在多台计算机的集群上运行。
  18. 在Spark中,可以通过命令行或配置文件设置运行模式。自定义运行模式可能需要更改Spark的配置文件,主要包括网络配置、内存配置、CPU配置等。
  19. 线程池是一种用于管理线程的方式,可以实现线程的复用和管理,以提高应用程序的效率和可靠性。在Spark中,线程池通常用于管理Executor的线程和内存调度器中的线程。
  20. Spark中实现数据共享的机制包括广播变量和共享变量。共享变量允许多个并行任务共享单个变量的内存副本,而广播变量可以有效地广泛分发一个只读变量。
  21. 在Spark中,数据分区是将数据拆分为多个部分进行处理的过程。Spark可以通过对数据进行分区来充分利用并行计算的能力,从而提高执行效率。
  22. Spark中的算子主要分为转换操作和行动操作两种类型。转换操作是一种无副作用的操作,它只是创建了一个新的RDD;而行动操作会对RDD产生实际的结果。
  23. DAG(Directed Acyclic Graph,有向无环图)是Spark中用于优化和计划任务执行的数据结构。DAG由一组有向边组成,其指向是根据数据流和计算流程确定的,而且没有循环依赖关系。
  24. 在Spark中进行数据清洗时,可以借助各种转换操作和过滤器,例如filter、map、flatMap等。
  25. Spark缓存是一种将RDD的数据保存在内存中的机制。Spark中的缓存可以大大加快迭代式计算和算法的执行速度。
  26. 在Spark中,coalesce和repartition都是用于重新分区的操作,它们的区别在于coalesce只能减少分区数,而repartition既可以增加分区数,也可以减少分区数。
  27. 在Spark中,map用于对RDD中的每个元素进行转换,而flatMap则用于对RDD中的每个元素生成多个输出。
  28. 在Spark中,filter和where都可以用于从RDD中过滤特定的元素,它们的区别在于filter返回一个新的RDD,而where返回一个Dataset。
  29. 在Spark中,join用于将两个RDD组合在一起,而cogroup则用于将两个或多个RDD进行分组聚合。
  30. 是的,Spark支持多语言,目前支持Java、Scala、Python和R。
  31. Spark支持多种文件格式,包括JSON、CSV、Avro、Parquet、ORC和SequenceFile等。
  32. 在Spark中,可以通过设置并行度来调整作业的性能。并行度指的是同时执行Spark任务的任务数,可以通过配置参数spark.default.parallelism来设置。
  33. Spark Checkpoint是在RDD执行过程中将RDD数据写入磁盘的机制,以防止数据丢失或由于内存不足而被Spark重启机制丢弃。
  34. 调试Spark作业需要使用调试工具,可以通过命令行、日志记录和Spark浏览器等方式来跟踪Spark任务的执行情况。
  35. Spark中的事件监听器是用来监控Spark事件的机制,包括Spark作业的启动、停止、失败等事件。
  36. 在Spark中,可以通过MLlib库来训练和部署机器学习模型,同时也可以使用Spark Streaming进行实时机器学习。
  37. Spark支持对实时数据流的处理和分析,可以通过Spark Streaming和Structured Streaming等模块来实现。
  38. 可以通过控制Executor的数量、内存和cpu占用等参数,以及使用合适的缓存和分区设置来管理并发度。
  39. reduceByKey和groupByKey都可以用于对RDD中的键值对进行操作,区别在于reduceByKey可以在分区内先局部合并,再全局合并,而groupByKey会将分区内所有的值聚合在一起。
  40. Spark Scheduler是Spark中的一个模块,用于分配任务和资源,以确保作业的正确执行。
  41. 在Spark中,任务调度是通过Spark调度器进行的,它将Spark作业划分为任务,并在集群中合理分配每个任务。
  42. 可以使用filter函数轻松地选择RDD中所需的元素。
  43. 在Spark中,数据接收器是一种用于接
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值