网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
- Spark 和 Hadoop的区别是什么?
- Spark 中的 RDD 是什么?
- RDD 可以持久化,具体是怎么实现的?
- Spark 中的累加器是什么?
- Spark 中的广播变量是什么?
- 什么是 Spark SQL?
- Spark Streaming 和 Spark 的区别是什么?
- 什么是 Spark MLlib?
- Spark 中的 GraphX 是什么?
- 如何调优 Spark 作业?
- Spark 中的 shuffle 是什么?
- Spark 作业的主要两个因素是什么?
- 什么是 Spark Standalone?
- Spark 中的 master 和 worker 是什么?
- Spark 中的 Executor 和 Driver 是什么?
- 什么是 Spark 运行模式?
- 如何在 Spark 中设置运行模式?
- 什么是线程池?
- Spark 中通过什么机制实现数据共享?
- Spark 中的数据分区是什么?
- Spark 中的算子都有哪些类型?
- 什么是 DAG?
- 如何使用 Spark 进行数据清洗?
- 什么是 Spark 缓存?
- Spark 中的 coalesce 和 repartition 联系和区别是什么?
- Spark 中的 map 和 flatMap 区别是什么?
- Spark 中的 filter 和 where 的区别是什么?
- Spark 中的 join 和 cogroup 区别是什么?
- Spark 是否支持多语言?
- Spark 支持哪些文件格式?
- Spark 中的并行度怎么设置?
- 什么是 Spark Checkpoint?
- 如何调试 Spark 作业?
- Spark 中的事件监听器是什么?
- 如何使用 Spark 进行机器学习?
- Spark 是否支持实时流分析?
- Spark 中如何控制并发度?
- Spark 中的 reduceByKey 和 groupByKey 的区别是什么?
- 什么是 Spark Scheduler?
- Spark 中的任务调度是如何完成的?
- Spark 中如何使用过滤器?
- Spark 中数据接收器是什么?
- 如何使用 Spark 进行数据聚合操作?
- Spark 中的数据源是什么?
- Spark 中 RDD 的 partition 分配机制是什么?
- 如何使用 Spark 进行数据转换操作?
- Spark 中的串行化和反串行化是什么?
- Spark 中的 RDD 是如何实现容错机制的?
- 什么是 Spark 整合 YARN?
Spark 答案
- Spark是一个开源的大数据处理引擎,使用高效的数据处理方式,支持多种语言和API。
- Spark和Hadoop的区别主要在于内部的数据处理引擎不同,虽然二者都可以处理大数据,但Spark一般更快,更适合处理迭代式算法,而Hadoop则更适合处理批量处理数据。
- RDD(Resilient Distributed Datasets,弹性分布式数据集)是Spark中一个关键的数据结构,它代表了一个被分区的只读数据集。RDD可以缓存到内存中,因此可以在多个任务中重复使用。
- RDD持久化是指将RDD的内容固定到内存或磁盘上,以便在需要时重新使用。RDD可以通过persist()方法实现持久化,也可以利用cache()方法将RDD缓存到内存中。
- 累加器是Spark中另一个重要的概念,它是可写入的变量,用于在所有的分区之间并行聚合计算。Spark支持多种类型的累加器,包括基本类型,元组和列表等。
- 广播变量是Spark中一种特殊的变量类型,用于将一个只读变量广泛分发到所有工作节点上,以便在计算期间重复使用。广播变量是通过使用broadcast()方法实现的。
- Spark SQL是用于处理结构化数据的模块,它提供了SQL查询接口,可以操作包括JSON、Parquet、Hive表等多种数据源,支持SQL查询、聚合、连接等常见操作。
- Spark Streaming是Spark提供的流处理模块,可以在实时中运行,支持高度并发,提供灵活的流处理API。
- Spark MLlib是Spark中的一个机器学习库,提供了各种机器学习算法和工具,可以处理分类、回归、聚类、特征提取等任务。
- Spark中的GraphX是对图计算的支持,它可以对无向图和有向图进行操作。
- 调优Spark作业需要注意很多方面,包括数据源和存储、算法设计、性能优化等。其中一些重要的策略包括选择适当的RDD和内存缓存机制,以及通过合理的调度控制和并发程度来管理资源。
- Shuffle是Spark中一个特殊的数据转换过程,它指的是将数据重新分布到不同的节点上以便于进一步处理。Shuffle是Spark中非常耗时的操作之一,通常需要在任务之前或之后进行优化。
- 当Spark作业执行时,它可以分为任务和阶段两个主要部分。任务是指一组运行在一个节点上的操作,而阶段则是一组任务的组合,形成有序的执行流程,以实现大规模数据处理。
- Spark Standalone是一种Spark运行模式,它是Spark的内置集群管理器。它可以在单个计算机上运行,也可以在多台计算机的集群上运行。
- 在Spark中,master是Spark Standalone集群的管理节点,用于协调集群中所有的工作节点。worker则是集群中的计算节点,它们负责执行Spark任务。
- 在Spark中,Executor是执行Spark任务的进程,而Driver是运行Spark作业的进程。Driver负责协调执行任务的Executor、监控作业的执行,以及向用户报告结果等。
- Spark的运行模式主要包括Spark Standalone、Apache Mesos和Apache YARN。其中,Spark Standalone是Spark的内置集群管理器,可以在单个计算机上运行,也可以在多台计算机的集群上运行。
- 在Spark中,可以通过命令行或配置文件设置运行模式。自定义运行模式可能需要更改Spark的配置文件,主要包括网络配置、内存配置、CPU配置等。
- 线程池是一种用于管理线程的方式,可以实现线程的复用和管理,以提高应用程序的效率和可靠性。在Spark中,线程池通常用于管理Executor的线程和内存调度器中的线程。
- Spark中实现数据共享的机制包括广播变量和共享变量。共享变量允许多个并行任务共享单个变量的内存副本,而广播变量可以有效地广泛分发一个只读变量。
- 在Spark中,数据分区是将数据拆分为多个部分进行处理的过程。Spark可以通过对数据进行分区来充分利用并行计算的能力,从而提高执行效率。
- Spark中的算子主要分为转换操作和行动操作两种类型。转换操作是一种无副作用的操作,它只是创建了一个新的RDD;而行动操作会对RDD产生实际的结果。
- DAG(Directed Acyclic Graph,有向无环图)是Spark中用于优化和计划任务执行的数据结构。DAG由一组有向边组成,其指向是根据数据流和计算流程确定的,而且没有循环依赖关系。
- 在Spark中进行数据清洗时,可以借助各种转换操作和过滤器,例如filter、map、flatMap等。
- Spark缓存是一种将RDD的数据保存在内存中的机制。Spark中的缓存可以大大加快迭代式计算和算法的执行速度。
- 在Spark中,coalesce和repartition都是用于重新分区的操作,它们的区别在于coalesce只能减少分区数,而repartition既可以增加分区数,也可以减少分区数。
- 在Spark中,map用于对RDD中的每个元素进行转换,而flatMap则用于对RDD中的每个元素生成多个输出。
- 在Spark中,filter和where都可以用于从RDD中过滤特定的元素,它们的区别在于filter返回一个新的RDD,而where返回一个Dataset。
- 在Spark中,join用于将两个RDD组合在一起,而cogroup则用于将两个或多个RDD进行分组聚合。
- 是的,Spark支持多语言,目前支持Java、Scala、Python和R。
- Spark支持多种文件格式,包括JSON、CSV、Avro、Parquet、ORC和SequenceFile等。
- 在Spark中,可以通过设置并行度来调整作业的性能。并行度指的是同时执行Spark任务的任务数,可以通过配置参数spark.default.parallelism来设置。
- Spark Checkpoint是在RDD执行过程中将RDD数据写入磁盘的机制,以防止数据丢失或由于内存不足而被Spark重启机制丢弃。
- 调试Spark作业需要使用调试工具,可以通过命令行、日志记录和Spark浏览器等方式来跟踪Spark任务的执行情况。
- Spark中的事件监听器是用来监控Spark事件的机制,包括Spark作业的启动、停止、失败等事件。
- 在Spark中,可以通过MLlib库来训练和部署机器学习模型,同时也可以使用Spark Streaming进行实时机器学习。
- Spark支持对实时数据流的处理和分析,可以通过Spark Streaming和Structured Streaming等模块来实现。
- 可以通过控制Executor的数量、内存和cpu占用等参数,以及使用合适的缓存和分区设置来管理并发度。
- reduceByKey和groupByKey都可以用于对RDD中的键值对进行操作,区别在于reduceByKey可以在分区内先局部合并,再全局合并,而groupByKey会将分区内所有的值聚合在一起。
- Spark Scheduler是Spark中的一个模块,用于分配任务和资源,以确保作业的正确执行。
- 在Spark中,任务调度是通过Spark调度器进行的,它将Spark作业划分为任务,并在集群中合理分配每个任务。
- 可以使用filter函数轻松地选择RDD中所需的元素。
- 在Spark中,数据接收器是一种用于接