【小白】LabelMe数据标注教程(无需安装环境)

什么是labelme?

LabelMe 是一款开源的图像标注工具,由麻省理工学院(MIT)计算机科学与人工智能实验室(CSAIL)开发,
广泛应用于计算机视觉领域的数据标注任务。它支持多种标注类型,包括目标检测、图像分割、关键点标注等,
是研究人员和开发者构建高质量数据集的得力助手。

核心功能

  • 对图像进行多边形,矩形,圆形,多段线,线段,点形式的标注(可用于目标检-测,图像分割等任务)。
  • 对图像进行进行 flag 形式的标注(可用于图像分类 和 清理 任务)。
  • 灵活的数据格式,标注结果以 JSON 文件保存,兼容主流深度学习框架(如 COCO、Pascal VOC 等)。
  • 用户友好界面,提供直观的图形界面,支持快捷键操作,标注效率高。

安装labelme.exe版本(只适用于windows)

https://github.com/labelmeai/labelme/releases/download/v5.5.0/Labelme.exe
有需要数据代标注的可联系我哦~

1.初识LabelMe

在这里插入图片描述

打开之后我们自己设置一下,视图部分可以勾选一下

在这里插入图片描述

2.基础功能介绍

在这里插入图片描述

3.为图像创建标签,也就是打标签。

标签介绍:在机器学习使用labelme标注软件中,用的比较多的就三种,1、矩形框,2、多边形,3、图像分类,其他的用法也一样,不过用的比较少,所以这里就不过多介绍了。

打开需要标注的文件夹

在这里插入图片描述

多边形工具标注

以标注橘子的表面坏掉区域做演示,主要是把橘子坏掉的部分给圈住,用来给机器识别。

在这里插入图片描述

框住之后就可以填写标签名了

在这里插入图片描述

保存之后就能生成JSON文件了

在这里插入图片描述

矩形工具标注

矩形工具标注相对多边形标注就简单很多,点击鼠标左键,开始画框,把目标物框住之后,再点击鼠标左键,结束画框,此时会弹出一个对话框,可以在输入框中输入你标注的目标的名称。

在这里插入图片描述

框住目标物,填写名称然后保存生成json文件。

在这里插入图片描述

在这里插入图片描述
图像分类
labelme图像分类启动方式
在图片文件目录下创建一个名为flags.txt文件,文件中输入你分类图片的名称

在这里插入图片描述

之后找到安装labelme文件路径

在这里插入图片描述

找到路径之后启动命令面板

在这里插入图片描述

在面板上输入存放图片和flags的路径,例如我这里存放到了D盘的data_annotated文件里

在这里插入图片描述

在面板上输入这行代码,记得要根据自己的路径来

labelme.exe D:\data_annotated --flags D:\data_annotated\flags.txt --nodata

启动之后的样子
在这里插入图片描述

选择对应的标签名

在这里插入图片描述

保存之后建议存储在图片文件夹里,生成的JSON文件名称也会跟图片名称一一对应

在这里插入图片描述

打开JSON文件可以看到与实例分割和目标检测并不相似,我们创建的txt文件存储的名称在labelme进行图像分类选择相对应的标签名会为true,而我们训练模型只需要提取红色框选区域即可。

在这里插入图片描述
大概步骤

  • 1.在放图片同目录的文件夹当中创建一个名为flags的txt文件存储图片分类名称
  • 2.根据路径启动labelme
  • 3.根据图片选择相对应的名称
  • 4.最后存储
    以上就是做图像实例分割、目标检测、图像分类,使用labelme打标签的详细教程,希望能帮助到你!
### LabelMe 数据标注工具使用教程 #### 安装准备 为了顺利使用LabelMe数据标注工具,建议先按照特定的方法完成安装。对于Windows系统的用户来说,推荐通过Anaconda来管理Python环境以及依赖包的安装[^1]。 #### 启动程序 一旦成功安装完毕之后,可以通过命令提示符或者Anaconda Prompt输入`labelme`启动该软件。如果一切正常配置无误的话,浏览器会自动打开一个新的标签页加载LabelMe界面;如果没有自启,则可以手动访问本地服务器地址(通常是http://127.0.0.1:5000/)。 #### 创建新项目 首次运行时,点击界面上方菜单栏里的“Create Project”,然后指定保存路径和名称即可创建新的标注工程。这一步骤非常重要,因为所有的图片都将被导入到这个新建好的工程项目当中去进行后续操作。 #### 导入待处理图像 接着就是把想要用来做标记工作的原始素材——即那些未经任何编辑的照片或截图等放入刚才建立起来的那个文件夹里边儿。当这些资源准备好以后,刷新网页就能看到它们出现在列表之中等待进一步的操作了。 #### 开始绘制边界框或其他形状 选中某一张具体的图样后就可以着手开展实际的任务啦!利用左侧工具箱提供的选项能够轻松画出矩形、圆形乃至自由曲线等多种类型的区域轮廓线,并为其赋予相应的类别标签以便区分不同对象之间的差异性特征。 #### 修改已有的标注信息 如果不小心弄错了某些地方也不必担心,只要重新选取那个部分再调整就好。另外值得注意的是,在一些特殊情况下可能还需要对`.json`格式存储下来的元数据记录作出适当更改以确保准确性。比如针对Windows环境下可能出现的文件命名冲突问题就需要改动源码中的相应位置才能彻底解决这个问题[^2]。 #### 保存成果导出JSON文件 最后别忘了及时存盘哦~每次做完一批工作记得要点击右上角按钮将当前进度另存为JSON文档形式固定下来。这样不仅方便日后查阅回顾整个过程而且也为机器学习算法提供了结构化的训练样本集作为基础支持材料。 ```python import json data = { "version": "3.16.7", "flags": {}, ... } with open('annotations.json', 'w') as f: json.dump(data, f) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值