一、背景
目前,许多目标检测算法如yolo以及Mask-RCNN均得到了广泛应用,如在机械臂抓取领域。而现成的权重文件未必能准确识别我们自己的数据集,如特殊工件或特殊种类的水果等。因此,我们需要对我们自己的数据集进行标注,以训练深度学习网络,获得我们自己的权重文件。
lebelme便是一个特别容易上手的标注工具,可以在windows系统、ubuntu系统上方便使用。结下来将详细介绍labelme的安装及使用方法,10分钟搞定。
二、ubuntu系统下安装labelme
1 首先确保你成功安装了Anaconda,如果没有,请参考我之前的博客
2 创建名为labelme的conda环境
conda activate --name=labelme python=3.8
3 启动labelme conda环境
conda activate labelme
4 安装labelme
pip install labelme
安装完成~~
三、ubuntu系统下使用labelme进行数据集标注
1 启动labelme
conda activate labelme
labelme
2 在labelme窗口下,打开你需要标注的文件,为方便后期多张图片的标注,建议直接打开目录(即文件夹),然后选中需要标记的图片。如果是目标检测任务,右键创建矩形框,标注完成后,保存为.json文件即可。
小tip:如果每张图片的差异不是很大,可以选中编辑--保留最后的标注
,这样标注下一张图片的时候不用再重新一个一个的“制作”矩形框,只需稍微拖动或改变大小即可。