abstract:开发了一个用于四中不同化学极性的两相流分离的核心环空分离器,并提出了两种基于机器学习的方法来回答两个问题1,是否实现完全的相分离2确定水的最大输入流量是否可以加速分离过程。结果显示在最大总输入流量为4000ulmin-1时,芯环分离器实现了水-溶剂两相的完全分离,准确率达到92.2%,多层感知器网络对流量的预测效果最好 introduction:分离效率的高低影响产品的纯度和成本,流体预测是新兴领域十分困难,多相流需要精确控制输入参数如压力、流速和表面张力,利用图形流型识别和优化回归等方法正在迅速发展以减少复杂的力学计算。(机器学习应用在两相流需要考虑复杂的非混相两相流模式,分离器设计和流体动力学)本文提出了一种用于两相流分离的分离器和两种基于机器学习的过程预测方法,分离 器具有可调节的结构可适应各种表面张力并使分离过程能够分离四种液体对,研究了系统的稳定性和分离效率,证明了系统的可拓 展性,提出了用分类学习器和神经网络模拟的数据驱动方法来预测各种两相流的流型,所提出的神经网络拟合模型的预测比传统基 于机器学习的算法的回归结果更准确,降低了工艺开发成本。 设计理论: 1,在了解分离器之前先了解流体与结构之间的作用力。惯性力、界面张力和粘连力在两相流型中起主要作用,常见的流型包括段塞流(泰勒流)、段塞环空流、环空流和液体流,如果在较高流体速度下运行可能出现更为复杂的流动模式如分散流动。本文的重点在于揭示和控制惯性力和粘性力在从段塞流到环空流的转变中的作用。分离器不包括一个玻璃腔和一个304不锈钢螺旋线,旨在创造一种空气-液体-液体环境。段塞-液滴流进入玻璃腔然后进入螺旋线,有机相比水相具有更低的气液界面张力,优先湿润金属丝并在金属丝中积累,由于不断流入的液体,有机相随后从金属相中滴出导致水滴之间的距离减小并
在液-液界面操作分离器中进行两相流分离的机器学习-ACS
最新推荐文章于 2025-05-12 11:31:07 发布