快读论文-利用大模型做富文本推荐

本文探讨了如何在推荐系统中应用大型语言模型处理文本丰富的用户行为,提出使用CNN/RNN提取用户历史特征,并通过层次和循环总结范式进行用户偏好总结。实验结果显示,这种方法在Amazon和Mind数据集上有效,但过多历史影响模型性能。研究还提出了参数高效微调策略和未来可能的注意力机制应用的讨论。
摘要由CSDN通过智能技术生成

一、论文背景

  • 今天分享的快读文章标题是Harnessing Large Language Models for Text-Rich Sequential Recommendation
  • 大型语言模型(LLMs)在推荐系统(RS)中的应用正在改变传统推荐系统的设计。
  • 面对文本丰富的推荐场景(如电商产品描述、社交媒体新闻标题),LLMs 需要处理更长的文本以捕捉用户行为序列,这带来了一系列挑战,包括输入长度限制、计算资源消耗和性能优化问题。

二、提出方法

2.1 总体框架

在这里插入图片描述

  • 使用一个summarizer来对用户历史进行“特征提取”,形成用户偏好总结。
  • 因为summarizer的限制,使用用户历史分块方式分别进行提取。(本文提出了类似CNN、RNN结构两种方法)
  • 基于上述用户历史行为,训练LLM-based Recommder
  • 将用户偏好总结、用户历史、物品信息综合输入到LLM-based Recommender,进行推荐,输出标签为yes\ no

2.2 层次总结范式(hierarchical summarization paradigm.)

看图,比较一目了然:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.3 循环总结范式(Recurrent LLM-based User Preference Summarization)

同理看图:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.4 LLM-based Recommedation

在这里插入图片描述

  • LLM-based Recommender的训练:利用生成的用户偏好摘要,构建一个包含用户偏好摘要、近期用户交互和候选项目信息的提示文本(prompt text)。将提示文本输入到LLM-based推荐模型中,并使用监督式微调(Supervised Fine-Tuning, SFT)技术对模型进行微调,使其能够输出“是”或“否”来表示用户对候选项目的兴趣。
  • 参数高效微调(PEFT):为了减少内存开销并加快训练过程,使用基于低秩适应(Low-Rank Adaptation, LoRA)的参数高效微调方法,Loss使用交叉熵。

三、实验指标

对比不同算法效果

在这里插入图片描述
在这里插入图片描述

  • 论文使用amazon、mind两个数据集进行实验,使用 Recall@K 和 Mean Reciprocal Rank (MRR)@K 作为评价指标,其中 K 可以是 3、5 和 10,可以看到本文的方法在实验数据集上的提升。
  • Figure 9 表示太多历史行为反而导致模型效果的下降,可能跟大模型容量有关?Figure 10、11展示了不用模型参数在数据上的效果。

四、论文地址

五、疑问

既然可以使用cnn、rnn接口来提取用户历史,后续能否用模拟attention的方法来提取用户历史特征?

  • 19
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值