基于Transformer实现机器翻译(日译中)

一、transformer介绍

  Transformer是一种基于自注意力机制的神经网络模型,最早由Vaswani等人在2017年提出,主要用于处理序列到序列的任务,如机器翻译、文本生成等。相比于传统的循环神经网络(RNN)和卷积神经网络(CNN),Transformer在处理序列数据时具有更好的并行性和全局信息的感知能力。

Transformer的结构和原理

 Transformer由编码器(Encoder)栈和解码器(Decoder)栈两个部分组成,常用于序列到序列的任务,如机器翻译和文本摘要等。

  编码器栈:编码器负责将输入序列转化为连续的向量表示。它由多个相同结构的编码器堆叠而成,每个编码器都包含自注意力层和前馈神经网络层。编码器可以同时处理整个输入序列,充分利用了序列中各个位置的信息。

  解码器栈:解码器栈负责根据编码器栈的输出和目标序列生成对应的输出序列。它也由多个相同结构的解码器堆叠而成,每个解码器都包含自注意力层、编码-解码注意力层和前馈神经网络层。解码器通过自注意力机制捕捉输入序列中的上下文信息,并通过编码-解码注意力机制与编码器的输出进行关联。

下面开始介绍本次实验内容。

二、基于Transformer实现机器翻译

1.导入所需的软件包

import math
import torchtext
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader
from collections import Counter
from torchtext.vocab import Vocab
from torch.nn import TransformerEncoder, TransformerDecoder, TransformerEncoderLayer, TransformerDecoderLayer
import io
import time
import pandas as pd
import numpy as np
import pickle
import tqdm
import sentencepiece as spm
torch.manual_seed(0)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# print(torch.cuda.get_device_name(0)) ## 如果你有GPU,请在你自己的电脑上尝试运行这一套代码

 2.获取并行数据集

  在本教程中,我们将使用从JParaCrawl![http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl]]下载的日语-英语并行数据集,该数据集被描述为“NTT创建的最大的公开可用的英语-日语并行语料库”。它主要是通过抓取网络并自动对齐平行句子创建的。”你也可以在这里看到报纸

df = pd.read_csv('zh-ja.bicleaner05.txt', sep='\\t', engine='python', header=None)
trainen = df[2].values.tolist()#[:10000]
trainja = df[3].values.tolist()#[:10000]

  在导入所有日语和英语对应项之后,我删除了数据集中的最后一个数据,因为它有一个缺失的值。总的来说,trainen和trainja中的句子数量都是5,973,071,然而,出于学习目的,通常建议在一次使用所有数据之前对数据进行采样并确保一切正常工作,以节省时间。

下面是一个包含在数据集中的句子示例。

print(trainen[500])
print(trainja[500])

运行之后我们可以得到以下结果:

Chinese HS Code Harmonized Code System < HS编码 2905 无环醇及其卤化、磺化、硝化或亚硝化衍生物 HS Code List (Harmonized System Code) for US, UK, EU, China, India, France, Japan, Russia, Germany, Korea, Canada ...
Japanese HS Code Harmonized Code System < HSコード 2905 非環式アルコール並びにそのハロゲン化誘導体、スルホン化誘導体、ニトロ化誘導体及びニトロソ化誘導体 HS Code List (Harmonized System Code) for US, UK, EU, China, India, France, Japan, Russia, Germany, Korea, Canada ...

  我们也可以使用不同的并行数据集来跟随本文,只要确保我们可以将数据处理成如上所示的两个字符串列表,其中包含日语和英语句子。

3.准备标记器

与英语或其他按字母顺序排列的语言不同,日语句子不包含空格来分隔单词。我们可以使用JParaCrawl提供的标记器,它是使用sentencepece为日语和英语创建的,您可以访问JParaCrawl网站下载它们,或者点击这里。

en_tokenizer = spm.SentencePieceProcessor(model_file='spm.en.nopretok.model')
ja_tokenizer = spm.SentencePieceProcessor(model_file='spm.ja.nopretok.model')

加载标记器之后,你可以测试它们,例如,通过执行下面的代码。

en_tokenizer.encode("All residents aged 20 to 59 years who live in Japan must enroll in public pension system.", out_type=str)
ja_tokenizer.encode("年金 日本に住んでいる20歳~60歳の全ての人は、公的年金制度に加入しなければなりません。", out_type=str)

运行结果分别如下:

['▁All',
 '▁residents',
 '▁aged',
 '▁20',
 '▁to',
 '▁59',
 '▁years',
 '▁who',
 '▁live',
 '▁in',
 '▁Japan',
 '▁must',
 '▁enroll',
 '▁in',
 '▁public',
 '▁pension',
 '▁system',
 '.']
['▁',
 '年',
 '金',
 '▁日本',
 'に住んでいる',
 '20',
 '歳',
 '~',
 '60',
 '歳の',
 '全ての',
 '人は',
 '、',
 '公的',
 '年',
 '金',
 '制度',
 'に',
 '加入',
 'しなければなりません',
 '。']

4.建立TorchText词汇对象并将句子转换为Torch张量

  使用标记器和原始句子,然后构建从TorchText导入的Vocab对象。根据数据集的大小和计算能力,这个过程可能需要几秒钟或几分钟。不同的标记器也会影响构建词汇所需的时间,我尝试了其他几个日语标记器,但sensenepece似乎工作得很好,对我来说足够快。

def build_vocab(sentences, tokenizer):
  counter = Counter()
  for sentence in sentences:#遍历句子列表
    counter.update(tokenizer.encode(sentence, out_type=str))#使用分词器将句子编码为字符串,并更新计数器
  return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])
# 构建日语和英语词汇表
ja_vocab = build_vocab(trainja, ja_tokenizer)
en_vocab = build_vocab(trainen, en_tokenizer)

在我们有了词汇表对象之后,我们可以使用词汇表和标记器对象来为我们的训练数据构建张量。

def data_process(ja, en):
    data = []
    for (raw_ja, raw_en) in zip(ja, en):
        # 对日语文本进行编码成张量
        ja_tensor_ = torch.tensor([ja_vocab[token] for token in ja_tokenizer.encode(raw_ja.rstrip("\n"), out_type=str)],
                                  dtype=torch.long)
        
        # 对英语文本进行编码成张量
        en_tensor_ = torch.tensor([en_vocab[token] for token in en_tokenizer.encode(raw_en.rstrip("\n"), out_type=str)],
                                  dtype=torch.long)
        
        # 将日语和英语的张量对加入到数据列表中
        data.append((ja_tensor_, en_tensor_))
    
    return data

# 使用data_process函数处理训练数据trainja和trainen,得到训练数据集train_data
train_data = data_process(trainja, trainen)

创建要在训练期间迭代的DataLoader对象

在这里,我将BATCH_SIZE设置为16以防止“cuda内存不足”,但这取决于各种事情,例如你的机器内存容量,数据大小等,因此可以根据你的需要随意更改批大小(注意:PyTorch的教程使用Multi30k德语-英语数据集将批大小设置为128)。

BATCH_SIZE = 8  # 每个批次的大小为8

PAD_IDX = ja_vocab['<pad>']  # 获取日语词汇表中的填充标记索引
BOS_IDX = ja_vocab['<bos>']  # 获取日语词汇表中的序列起始标记索引
EOS_IDX = ja_vocab['<eos>']  # 获取日语词汇表中的序列结束标记索引

def generate_batch(data_batch):
    ja_batch, en_batch = [], []
    for (ja_item, en_item) in data_batch:
        # 在每个日语序列和英语序列的开头和结尾添加起始标记和结束标记
        ja_batch.append(torch.cat([torch.tensor([BOS_IDX]), ja_item, torch.tensor([EOS_IDX])], dim=0))
        en_batch.append(torch.cat([torch.tensor([BOS_IDX]), en_item, torch.tensor([EOS_IDX])], dim=0))
    
    # 对批次中的所有序列进行填充,使用PAD_IDX作为填充值
    ja_batch = pad_sequence(ja_batch, padding_value=PAD_IDX)
    en_batch = pad_sequence(en_batch, padding_value=PAD_IDX)
    
    return ja_batch, en_batch

# 创建用于训练的数据加载器DataLoader
train_iter = DataLoader(train_data, batch_size=BATCH_SIZE,
                        shuffle=True, collate_fn=generate_batch)

5.Sequence-to-sequence变压器

接下来的代码和文本解释(以斜体书写)来自原始的PyTorch教程[https://pytorch.org/tutorials/beginner/translation_transformer.html]]。除了BATCH_SIZE和单词de_vocab被更改为ja_vocab之外,我没有做任何更改。

Transformer是在“Attention is all you need”论文中提出的用于解决机器翻译任务的Seq2Seq模型。变压器模型由编码器和解码器块组成,每个块包含固定数量的层。

编码器通过一系列多头注意和前馈网络层对输入序列进行传播处理。编码器的输出称为存储器,与目标张量一起馈送到解码器。编码器和解码器以端到端方式使用教师强迫技术进行培训。

from torch.nn import (TransformerEncoder, TransformerDecoder,
                      TransformerEncoderLayer, TransformerDecoderLayer)


class Seq2SeqTransformer(nn.Module):
    def __init__(self, num_encoder_layers: int, num_decoder_layers: int,
                 emb_size: int, src_vocab_size: int, tgt_vocab_size: int,
                 dim_feedforward:int = 512, dropout:float = 0.1):
        super(Seq2SeqTransformer, self).__init__()
        encoder_layer = TransformerEncoderLayer(d_model=emb_size, nhead=NHEAD,
                                                dim_feedforward=dim_feedforward)
        self.transformer_encoder = TransformerEncoder(encoder_layer, num_layers=num_encoder_layers)
        decoder_layer = TransformerDecoderLayer(d_model=emb_size, nhead=NHEAD,
                                                dim_feedforward=dim_feedforward)
        self.transformer_decoder = TransformerDecoder(decoder_layer, num_layers=num_decoder_layers)

        self.generator = nn.Linear(emb_size, tgt_vocab_size)
        self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size)
        self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size)
        self.positional_encoding = PositionalEncoding(emb_size, dropout=dropout)

    def forward(self, src: Tensor, trg: Tensor, src_mask: Tensor,
                tgt_mask: Tensor, src_padding_mask: Tensor,
                tgt_padding_mask: Tensor, memory_key_padding_mask: Tensor):
        src_emb = self.positional_encoding(self.src_tok_emb(src))
        tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))
        memory = self.transformer_encoder(src_emb, src_mask, src_padding_mask)
        outs = self.transformer_decoder(tgt_emb, memory, tgt_mask, None,
                                        tgt_padding_mask, memory_key_padding_mask)
        return self.generator(outs)

    def encode(self, src: Tensor, src_mask: Tensor):
        return self.transformer_encoder(self.positional_encoding(
                            self.src_tok_emb(src)), src_mask)

    def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor):
        return self.transformer_decoder(self.positional_encoding(
                          self.tgt_tok_emb(tgt)), memory,
                          tgt_mask)

文本标记通过使用标记嵌入表示。位置编码被添加到标记嵌入中以引入词序的概念。

class PositionalEncoding(nn.Module):
    def __init__(self, emb_size: int, dropout, maxlen: int = 5000):
        super(PositionalEncoding, self).__init__()
        den = torch.exp(- torch.arange(0, emb_size, 2) * math.log(10000) / emb_size)
        pos = torch.arange(0, maxlen).reshape(maxlen, 1)
        pos_embedding = torch.zeros((maxlen, emb_size))
        pos_embedding[:, 0::2] = torch.sin(pos * den)
        pos_embedding[:, 1::2] = torch.cos(pos * den)
        pos_embedding = pos_embedding.unsqueeze(-2)

        self.dropout = nn.Dropout(dropout)
        self.register_buffer('pos_embedding', pos_embedding)

    def forward(self, token_embedding: Tensor):
        return self.dropout(token_embedding +
                            self.pos_embedding[:token_embedding.size(0),:])

class TokenEmbedding(nn.Module):
    def __init__(self, vocab_size: int, emb_size):
        super(TokenEmbedding, self).__init__()
        self.embedding = nn.Embedding(vocab_size, emb_size)
        self.emb_size = emb_size
    def forward(self, tokens: Tensor):
        return self.embedding(tokens.long()) * math.sqrt(self.emb_size)

我们创建一个后续单词掩码来阻止目标单词关注它的后续单词。我们还创建遮罩,用于屏蔽源和目标填充令牌

def generate_square_subsequent_mask(sz):
    mask = (torch.triu(torch.ones((sz, sz), device=device)) == 1).transpose(0, 1)
    mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
    return mask

def create_mask(src, tgt):
  src_seq_len = src.shape[0]
  tgt_seq_len = tgt.shape[0]

  tgt_mask = generate_square_subsequent_mask(tgt_seq_len)
  src_mask = torch.zeros((src_seq_len, src_seq_len), device=device).type(torch.bool)

  src_padding_mask = (src == PAD_IDX).transpose(0, 1)
  tgt_padding_mask = (tgt == PAD_IDX).transpose(0, 1)
  return src_mask, tgt_mask, src_padding_mask, tgt_padding_mask

Define model parameters and instantiate model. 这里我们服务器实在是计算能力有限,按照以下配置可以训练但是效果应该是不行的。如果想要看到训练的效果请使用你自己的带GPU的电脑运行这一套代码。

当你使用自己的GPU的时候,NUM_ENCODER_LAYERS 和 NUM_DECODER_LAYERS 设置为3或者更高,NHEAD设置8,EMB_SIZE设置为512。

SRC_VOCAB_SIZE = len(ja_vocab)
TGT_VOCAB_SIZE = len(en_vocab)
EMB_SIZE = 512
NHEAD = 8
FFN_HID_DIM = 512
BATCH_SIZE = 16
NUM_ENCODER_LAYERS = 3
NUM_DECODER_LAYERS = 3
NUM_EPOCHS = 16
transformer = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS,
                                 EMB_SIZE, SRC_VOCAB_SIZE, TGT_VOCAB_SIZE,
                                 FFN_HID_DIM)

for p in transformer.parameters():
    if p.dim() > 1:
        nn.init.xavier_uniform_(p)

transformer = transformer.to(device)

loss_fn = torch.nn.CrossEntropyLoss(ignore_index=PAD_IDX)

optimizer = torch.optim.Adam(
    transformer.parameters(), lr=0.0001, betas=(0.9, 0.98), eps=1e-9
)
def train_epoch(model, train_iter, optimizer):
  model.train()
  losses = 0
  for idx, (src, tgt) in  enumerate(train_iter):
      src = src.to(device)
      tgt = tgt.to(device)

      tgt_input = tgt[:-1, :]

      src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input)

      logits = model(src, tgt_input, src_mask, tgt_mask,
                                src_padding_mask, tgt_padding_mask, src_padding_mask)

      optimizer.zero_grad()

      tgt_out = tgt[1:,:]
      loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1))
      loss.backward()

      optimizer.step()
      losses += loss.item()
  return losses / len(train_iter)


def evaluate(model, val_iter):
  model.eval()
  losses = 0
  for idx, (src, tgt) in (enumerate(valid_iter)):
    src = src.to(device)
    tgt = tgt.to(device)

    tgt_input = tgt[:-1, :]

    src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input)

    logits = model(src, tgt_input, src_mask, tgt_mask,
                              src_padding_mask, tgt_padding_mask, src_padding_mask)
    tgt_out = tgt[1:,:]
    loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1))
    losses += loss.item()
  return losses / len(val_iter)

三、开始训练

最后,在准备好必要的类和函数之后,我们准备训练我们的模型。这是不言而喻的,但是完成训练所需的时间可能会有很大的不同,这取决于很多事情,比如计算能力、参数和数据集的大小。

当我使用JParaCrawl(每种语言大约有590万个句子)的完整句子列表来训练模型时,使用单个RTX 4090D / 24 GB,每个epoch大约只需要十分钟左右,我们可以去AutoDL去租用GPU

在租用GPU的时候我们要注意环境配置,我使用的环境配置如下(仅做参考):python:3.8
torch: 1.11.0+cu113
torchvision: 0.12.0+cu113
torchaudio: 0.11.0
numpy: >=1.20.0
matplotlib: >=3.4.0
scikit-learn: >=0.24.0
pandas: >=1.3.0
jupyterlab: >=3.2.0
tqdm: >=4.62.0
sentencepiece:0.2.0
torchtext:0.6.0

代码如下:

for epoch in tqdm.tqdm(range(1, NUM_EPOCHS+1)):
  start_time = time.time()
  train_loss = train_epoch(transformer, train_iter, optimizer)
  end_time = time.time()
  print((f"Epoch: {epoch}, Train loss: {train_loss:.3f}, "
          f"Epoch time = {(end_time - start_time):.3f}s"))

训练过程如下:

1.试着用训练好的模型翻译一个日语句子

首先,我们创建翻译新句子的函数,包括获取日语句子、标记化、转换为张量、推理,然后将结果解码回句子,但这次是英语。

def greedy_decode(model, src, src_mask, max_len, start_symbol):
    src = src.to(device)
    src_mask = src_mask.to(device)
    memory = model.encode(src, src_mask)
    ys = torch.ones(1, 1).fill_(start_symbol).type(torch.long).to(device)
    for i in range(max_len-1):
        memory = memory.to(device)
        memory_mask = torch.zeros(ys.shape[0], memory.shape[0]).to(device).type(torch.bool)
        tgt_mask = (generate_square_subsequent_mask(ys.size(0))
                                    .type(torch.bool)).to(device)
        out = model.decode(ys, memory, tgt_mask)
        out = out.transpose(0, 1)
        prob = model.generator(out[:, -1])
        _, next_word = torch.max(prob, dim = 1)
        next_word = next_word.item()
        ys = torch.cat([ys,
                        torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=0)
        if next_word == EOS_IDX:
          break
    return ys
def translate(model, src, src_vocab, tgt_vocab, src_tokenizer):
    model.eval()
    tokens = [BOS_IDX] + [src_vocab.stoi[tok] for tok in src_tokenizer.encode(src, out_type=str)]+ [EOS_IDX]
    num_tokens = len(tokens)
    src = (torch.LongTensor(tokens).reshape(num_tokens, 1) )
    src_mask = (torch.zeros(num_tokens, num_tokens)).type(torch.bool)
    tgt_tokens = greedy_decode(model,  src, src_mask, max_len=num_tokens + 5, start_symbol=BOS_IDX).flatten()
    return " ".join([tgt_vocab.itos[tok] for tok in tgt_tokens]).replace("<bos>", "").replace("<eos>", "")

然后,我们可以调用翻译函数并传递所需的参数。

translate(transformer, "HSコード 8515 はんだ付け用、ろう付け用又は溶接用の機器(電気式(電気加熱ガス式を含む。)", ja_vocab, en_vocab, ja_tokenizer)

运行结果如下:

' ▁H S 代 码 ▁85 15 ▁ 标 准 电 气 ( 包 括 电 气 加 热 气 体 ) 、 焊 装 机 、 焊 接 或 焊 接 设 备 。 '
trainen.pop(5)
trainja.pop(5)

运行结果分别如下:

'Chinese HS Code Harmonized Code System < HS编码 8515 : 电气(包括电热气体)、激光、其他光、光子束、超声波、电子束、磁脉冲或等离子弧焊接机器及装置,不论是否 HS Code List (Harmonized System Code) for US, UK, EU, China, India, France, Japan, Russia, Germany, Korea, Canada ...'
'Japanese HS Code Harmonized Code System < HSコード 8515 はんだ付け用、ろう付け用又は溶接用の機器(電気式(電気加熱ガス式を含む。)、レーザーその他の光子ビーム式、超音波式、電子ビーム式、 HS Code List (Harmonized System Code) for US, UK, EU, China, India, France, Japan, Russia, Germany, Korea, Canada ...'

2.保存Vocab对象和训练好的模型

最后,在训练完成后,我们将首先使用Pickle保存Vocab对象(en_vocab和ja_vocab)。

import pickle
# open a file, where you want to store the data
file = open('en_vocab.pkl', 'wb')
# dump information to that file
pickle.dump(en_vocab, file)
file.close()
file = open('ja_vocab.pkl', 'wb')
pickle.dump(ja_vocab, file)
file.close()

最后,我们还可以使用PyTorch保存和加载函数保存模型以供以后使用。通常,有两种保存模型的方法,这取决于我们以后想要使用它们的目的。第一个仅用于推理,我们可以稍后加载模型并使用它从日语翻译成英语。

# save model for inference
torch.save(transformer.state_dict(), 'inference_model')

第二个也是用于推理的,但当我们稍后想要加载模型并想要恢复训练时也是如此。

# save model + checkpoint to resume training later
torch.save({
  'epoch': NUM_EPOCHS,
  'model_state_dict': transformer.state_dict(),
  'optimizer_state_dict': optimizer.state_dict(),
  'loss': train_loss,
  }, 'model_checkpoint.tar')

  • 11
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于Transformer实现机器翻译是一种先进的方法。在Pytorch,可以使用nn.Transformer实现英文到文的机器翻译任务\[1\]。如果想要深入了解nn.Transformer的使用,可以参考一篇博文《Pytorch nn.Transformer的使用详解与Transformer的黑盒讲解》\[1\]。在这篇博文,作者建议先学习CopyTask任务,然后再学习机器翻译任务,这样会更容易理解。 此外,谷歌翻也在逐步将转换器编码器引入其翻算法\[2\]。他们提供了一个即用型翻界面,可以在谷歌翻网站上使用\[2\]。另外,瓦斯瓦尼等人在2017年的研究发现,Transformer在WMT 2014英德翻任务和WMT 2014英法翻任务上取得了最先进的BLEU分数\[3\]。BLEU是一种用于评估机器翻译质量的指标,具体的评估方法可以在《Evaluating machine translation with BLEU》部分找到\[3\]。 综上所述,基于Transformer机器翻译方法在实践取得了很好的效果,并且在Pytorch有相应的实现。同时,谷歌翻也在逐步引入转换器编码器,并且Transformer机器翻译任务取得了最先进的结果。 #### 引用[.reference_title] - *1* [Pytorch入门实战(5):基于nn.Transformer实现机器翻译(英汉)](https://blog.csdn.net/zhaohongfei_358/article/details/126175328)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [【NLP】第6章 使用 Transformer 进行机器翻译](https://blog.csdn.net/sikh_0529/article/details/127037111)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值