数值分析复习:数值积分概述

本篇文章适合个人复习翻阅,不建议新手入门使用
本专栏:数值分析复习 的前置知识主要有:数学分析、高等代数、泛函分析

数值积分法

基本概念

定义:数值积分公式
数值积分法是指逼近 I ( f ) = ∫ a b f ( x ) d x I(f)=\int_a^bf(x)\mathrm{d}x I(f)=abf(x)dx的任意数值方法;主要方法是根据函数值 f ( x 0 ) , … , f ( x n ) f(x_0),\dots,f(x_n) f(x0),,f(xn) 构造
I n ( f ) = ∑ i = 0 n A i f ( x i ) I_n(f)=\sum\limits_{i=0}^nA_if(x_i) In(f)=i=0nAif(xi)使得 I ( f ) ≈ I n ( f ) I(f)\approx I_n(f) I(f)In(f);称其为数值积分公式,其截断误差为
E n ( f ) = I ( f ) − I n ( f ) E_n(f)=I(f)-I_n(f) En(f)=I(f)In(f)

定义:代数精度
m ∈ N + m\in\mathbb{N}^+ mN+,若 E n ( f ) E_n(f) En(f) f ( x ) = 1 , x , x 2 , … , x m f(x)=1,x,x^2,\dots,x^m f(x)=1,x,x2,,xm 都为 0,但对 f ( x ) = x m + 1 f(x)=x^{m+1} f(x)=xm+1 不为0,则称数值积分公式的代数精度为m

注:代数精度是衡量数值积分公式优劣的指标,节点相同的数值积分公式,代数精度越高越优。

注:若节点个数限制为 n + 1 n+1 n+1 个,则数值积分公式的代数精度一般不超过 2 n + 1 2n+1 2n+1,这是因为一般最多列 2 n + 2 2n+2 2n+2 个方程才能解出 A i A_i Ai f ( x i ) f(x_i) f(xi) 2 n + 2 2n+2 2n+2 个未知数

插值型数值积分

定义:插值型数值积分
若数值积分公式 I n ( f ) = I ( f ) I_n(f)=I(f) In(f)=I(f) 对次数不大于 n n n 的多项式精确成立,即对 ∀ f ∈ P n , E n ( f ) = 0 \forall f\in\mathbb{P}_n,E_n(f)=0 fPn,En(f)=0,则称数值积分 I n ( f ) I_n(f) In(f) 为插值型的

命题:下列等价

(1) I n ( f ) I_n(f) In(f) 为插值型的

(2) I n ( f ) I_n(f) In(f) 可由 f ( x ) f(x) f(x) 基于节点 x 0 , … , x n x_0,\dots,x_n x0,,xn n n n 次插值多项式 L n ( f ) L_n(f) Ln(f) 进行积分得到

注:由于 n n n 次插值多项式的唯一性,视 L n ( f ) L_n(f) Ln(f) 即为 Lagrange 插值多项式,则有
I ( L n ( f ) ) = I ( ∑ k = 0 n f ( x k ) l k ( x ) ) = ∫ a b ∑ k = 0 n f ( x k ) l k ( x ) d x = ∑ k = 0 n ( ∫ a b l k ( x ) d x ) f ( x k ) \begin{split} I(L_n(f))&=I(\sum\limits_{k=0}^nf(x_k)l_k(x))\\ &=\int_a^b\sum\limits_{k=0}^nf(x_k)l_k(x)\mathrm{d}x\\ &=\sum\limits_{k=0}^n(\int_a^bl_k(x)\mathrm{d}x)f(x_k) \end{split} I(Ln(f))=I(k=0nf(xk)lk(x))=abk=0nf(xk)lk(x)dx=k=0n(ablk(x)dx)f(xk)

所以(2)的意思就是将数值积分 I n ( f ) = ∑ k = 0 n A k f ( x k ) I_n(f)=\sum\limits_{k=0}^nA_kf(x_k) In(f)=k=0nAkf(xk) 中的 A k A_k Ak 取为 ∫ a b l k ( x ) d x \int_a^bl_k(x)\mathrm{d}x ablk(x)dx

证明思路
必要性:

I n ( f ) I_n(f) In(f) 为插值型积分可以得到 E n ( L n ( f ) ) = 0 E_n(L_n(f))=0 En(Ln(f))=0,即
I ( L n ( f ) ) − I n ( L n ( f ) ) = ∑ k = 0 n ( ∫ a b l k ( x ) d x ) f ( x k ) − ∑ k = 0 n A k ( L n ( f ) ) ( x k ) = ∑ k = 0 n ( ∫ a b l k ( x ) d x − A k ) f ( x k ) = 0 \begin{split} I(L_n(f))-I_n(L_n(f))&=\sum\limits_{k=0}^n(\int_a^bl_k(x)\mathrm{d}x)f(x_k)-\sum\limits_{k=0}^nA_k(L_n(f))(x_k)\\ &=\sum\limits_{k=0}^n(\int_a^bl_k(x)\mathrm{d}x-A_k)f(x_k)=0\\ \end{split} I(Ln(f))In(Ln(f))=k=0n(ablk(x)dx)f(xk)k=0nAk(Ln(f))(xk)=k=0n(ablk(x)dxAk)f(xk)=0

f f f 的任意性,可得 A k = ∫ a b l k ( x ) d x A_k=\int_a^bl_k(x)\mathrm{d}x Ak=ablk(x)dx

充分性:由Lagrange插值余项
f − L n ( f ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ∣ ω n + 1 ( x ) ∣ f-L_n(f)=\frac{f^{(n+1)}(\xi)}{(n+1)!}|\omega_{n+1}(x)| fLn(f)=(n+1)!f(n+1)(ξ)ωn+1(x)

故对任意 f ∈ P n f\in\mathbb{P}_n fPn,有 f = L n ( f ) f=L_n(f) f=Ln(f)

从而
I ( f ) = I ( L n ( f ) ) = ∑ k = 0 n ( ∫ a b l k ( x ) d x ) f ( x k ) = ∑ k = 0 n A k f ( x k ) = I n ( f ) \begin{split} I(f)&=I(L_n(f))=\sum\limits_{k=0}^n(\int_a^bl_k(x)\mathrm{d}x)f(x_k)\\ &=\sum\limits_{k=0}^nA_kf(x_k)=I_n(f)\\ \end{split} I(f)=I(Ln(f))=k=0n(ablk(x)dx)f(xk)=k=0nAkf(xk)=In(f)

注:有的书上也将本命题中的(2)作为插值型数值积分的定义,从而该命题改述为 I n ( f ) I_n(f) In(f) 是插值型数值积分当且仅当它有 n n n 次代数精度

命题
∀ k = 1 , 2 , … , n + 1 \forall k=1,2,\dots,n+1 k=1,2,,n+1 I n ( f ) I_n(f) In(f) 的代数精度为 n + k n+k n+k 等价于

  1. I n ( f ) I_n(f) In(f) 为插值型的
  2. ω n + 1 ( x ) = ∏ i = 0 n ( x − x i ) \omega_{n+1}(x)=\prod\limits_{i=0}^n(x-x_i) ωn+1(x)=i=0n(xxi) P k − 1 \mathbb{P}_{k-1} Pk1 正交:即
    ∀ P ( x ) ∈ P k − 1 , ∫ a b ω n + 1 ( x ) P ( x ) d x = 0 \forall P(x)\in\mathbb{P}_{k-1},\int_a^b\omega_{n+1}(x)P(x)\mathrm{d}x=0 P(x)Pk1,abωn+1(x)P(x)dx=0

注:换句话说,对插值型数值积分,若想提高代数精度,就只需合理选择节点的分布,这是因为一组更好的节点可以使 ω n + 1 ( x ) \omega_{n+1}(x) ωn+1(x) 与更高次数的 P k − 1 \mathbb{P}_{k-1} Pk1 正交

证明思路
必要性:(1)容易得到,(2)只需注意到 ω n + 1 ( x ) P ( x ) ∈ P n + k \omega_{n+1}(x)P(x)\in\mathbb{P}_{n+k} ωn+1(x)P(x)Pn+k

充分性:只需注意到 P n + k = ω n + 1 ( x ) P k − 1 + P n \mathbb{P}_{n+k}=\omega_{n+1}(x)\mathbb{P}_{k-1}+\mathbb{P}_n Pn+k=ωn+1(x)Pk1+Pn

参考书籍:《数值分析》李庆扬 王能超 易大义 编

  • 18
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于数值分析期末复习笔记.docx,下面是我简要的回答。 数值分析是一门研究利用数学方法解决数学问题的学科,重点在于求解数值计算问题以及分析数值计算方法的准确性和稳定性。在课程学习中,我们可以通过掌握一些重要的概念、算法和技巧来提高数值计算的效率和正确性。 在复习笔记中,可以包括以下内容: 1. 数值计算基础知识:涉及数值计算的误差、舍入误差和截断误差的概念以及如何进行误差分析。 2. 插值法:包括拉格朗日插值、牛顿插值和埃尔米特插值等方法,用于根据给定的数据点推断不存在的数据点。 3. 数值微积分:数值积分和数值微分的方法,包括梯形法则、辛普森法则和复合求积法。 4. 方程求解:包括二分法、牛顿迭代法和割线法等求解非线性方程的数值方法。 5. 线性方程组的数值解法:高斯消元法、LU分解法和迭代法(如雅可比法和Gauss-Seidel法)等。 6. 最小二乘拟合:通过最小化残差平方和来拟合一组数据点。 7. 常微分方程的数值解法:如欧拉方法、龙格-库塔法和Adams-Bashforth法等。 此外,还应该重点关注与数值分析相关的数值计算的应用领域,如工程、金融等。 通过复习这些重点内容,可以帮助我们更全面地理解数值分析的基本原理和方法,提高我们解决实际问题的能力。当然,为了更好地复习和掌握数值分析,日常的练习和理解概念也是非常重要的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值