数学分析复习:黎曼引理、黎曼-勒贝格引理

本篇文章适合个人复习翻阅,不建议新手入门使用

黎曼引理、黎曼-勒贝格引理

Riemann引理

我们知道一般情况下积分算子是无法保持乘法的,即
∫ a b f ( x ) ⋅ g ( x ) d x ≠ ∫ a b f ( x ) d x ⋅ ∫ a b g ( x ) d x \int_a^bf(x)\cdot g(x)\mathrm{d}x\neq \int_a^bf(x)\mathrm{d}x\cdot \int_a^bg(x)\mathrm{d}x abf(x)g(x)dx=abf(x)dxabg(x)dx

对于某些具有特殊性质的函数,我们有相像的结论

Riemann(黎曼)引理
f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上可积, g ( x ) g(x) g(x) T T T 为周期,且在 [ 0 , T ] [0,T] [0,T] 上可积,则
lim ⁡ n → ∞ ∫ a b f ( x ) g ( n x ) d x = 1 T ∫ 0 T g ( x ) d x ∫ a b f ( x ) d x \lim\limits_{n\to\infty}\int_a^bf(x)g(nx)\mathrm{d}x=\frac{1}{T}\int_0^Tg(x)\mathrm{d}x\int_a^bf(x)\mathrm{d}x nlimabf(x)g(nx)dx=T10Tg(x)dxabf(x)dx

如果我们能证明 g ( x ) ≥ 0 g(x)\geq 0 g(x)0 的情形,那么一般情形也证得,只需将 g ( x ) g(x) g(x) 分成正部和负部即可;以下设 g ( x ) ≥ 0 g(x)\geq 0 g(x)0

证明
由于 g ( x ) g(x) g(x) T T T 为周期,故 g ( x ) g(x) g(x) T n \frac{T}{n} nT 为周期,当 n n n 充分大时,存在足够大的正整数 m m m ,使得
[ A , b ] = [ − m T , m T ] ⊃ [ a , b ] [A,b]=[-mT,mT]\supset [a,b] [A,b]=[mT,mT][a,b]

F ( x ) = { f ( x ) , x ∈ [ a , b ] 0 , x ∈ [ A , B ] / [ a , b ] F(x)=\begin{cases} f(x),&x\in[a,b]\\ 0,&x\in[A,B]/[a,b]\\ \end{cases} F(x)={f(x),0,x[a,b]x[A,B]/[a,b]

F ( x ) F(x) F(x) [ A , B ] [A,B] [A,B] 上可积,且
I n ≜ ∫ a b f ( x ) g ( n x ) d x = ∫ A B F ( x ) g ( n x ) d x I_n\triangleq \int_a^bf(x)g(nx)\mathrm{d}x=\int_A^BF(x)g(nx)\mathrm{d}x Inabf(x)g(nx)dx=ABF(x)g(nx)dx

[ A , B ] [A,B] [A,B] 等分 2 m n 2mn 2mn 份,每个小区间长度为 T n \frac{T}{n} nT ,设分划
A = x 0 < x 1 < ⋯ < x 2 m n = B A=x_0<x_1<\cdots<x_{2mn}=B A=x0<x1<<x2mn=B

从而
I n = ∫ A B F ( x ) g ( n x ) d x = ∑ i = 1 2 m n ∫ x i − 1 x i F ( x ) g ( n x ) d x = ∑ i = 1 2 m n F ( c i ) ∫ x i − 1 x i g ( n x ) d x I_n=\int_A^BF(x)g(nx)\mathrm{d}x=\sum\limits_{i=1}^{2mn}\int_{x_{i-1}}^{x_i}F(x)g(nx)\mathrm{d}x=\sum\limits_{i=1}^{2mn}F(c_i)\int_{x_{i-1}}^{x_i}g(nx)\mathrm{d}x In=ABF(x)g(nx)dx=i=12mnxi1xiF(x)g(nx)dx=i=12mnF(ci)xi1xig(nx)dx

作代换 t = n x t=nx t=nx ,则有
∫ x i − 1 x i g ( n x ) d x = ∫ 0 T n g ( n x ) d x = 1 n ∫ 0 T g ( t ) d t \int_{x_{i-1}}^{x_i}g(nx)\mathrm{d}x=\int_0^{\frac{T}{n}}g(nx)\mathrm{d}x=\frac{1}{n}\int_0^Tg(t)\mathrm{d}t xi1xig(nx)dx=0nTg(nx)dx=n10Tg(t)dt

从而 I n = 1 T ∫ 0 T g ( x ) d x ∑ i = 1 2 m n c i T n I_n=\frac{1}{T}\int_0^Tg(x)\mathrm{d}x\sum\limits_{i=1}^{2mn}c_i\frac{T}{n} In=T10Tg(x)dxi=12mncinT

∑ i = 1 2 m n m i T n ≤ ∑ i = 1 2 m n c i T n ≤ ∑ i = 1 2 m n M i T n \sum\limits_{i=1}^{2mn}m_i\frac{T}{n}\leq\sum\limits_{i=1}^{2mn}c_i\frac{T}{n}\leq\sum\limits_{i=1}^{2mn}M_i\frac{T}{n} i=12mnminTi=12mncinTi=12mnMinT

注意到该不等式左右两端分别为 F ( x ) F(x) F(x) [ A , B ] [A,B] [A,B] 上的Darboux大、小和,从而
lim ⁡ n → ∞ I n = 1 T ∫ 0 T g ( x ) d x ⋅ ∫ A B F ( x ) d x = 1 T ∫ 0 T g ( x ) d x ⋅ ∫ a b f ( x ) d x \lim\limits_{n\to\infty}I_n=\frac{1}{T}\int_0^Tg(x)\mathrm{d}x\cdot\int_A^BF(x)\mathrm{d}x=\frac{1}{T}\int_0^Tg(x)\mathrm{d}x\cdot\int_a^bf(x)\mathrm{d}x nlimIn=T10Tg(x)dxABF(x)dx=T10Tg(x)dxabf(x)dx

上述Riemann引理有如下适应反常积分的情形
Riemann引理
f ( x ) f(x) f(x) [ a , + ∞ ) [a,+\infty) [a,+) 上绝对可积, g ( x ) g(x) g(x) 是周期为 T T T 的函数,在 [ 0 , T ] [0,T] [0,T] 上可积,则
lim ⁡ n → ∞ ∫ a ∞ f ( x ) g ( n x ) d x = 1 T ∫ 0 T g ( x ) d x ∫ a ∞ f ( x ) d x \lim\limits_{n\to\infty}\int_a^{\infty}f(x)g(nx)\mathrm{d}x=\frac{1}{T}\int_0^Tg(x)\mathrm{d}x\int_a^{\infty}f(x)\mathrm{d}x nlimaf(x)g(nx)dx=T10Tg(x)dxaf(x)dx

证明
∣ g ( x ) ∣ ≤ M |g(x)|\leq M g(x)M ,取 A ∈ ( a , ∞ ) A\in(a,\infty) A(a,) ,当 A A A 充分大时,
∣ ∫ a ∞ f ( x ) g ( n x ) d x − 1 T ∫ 0 T g ( x ) d x ∫ a ∞ f ( x ) d x ∣ = ∣ ∫ a A f ( x ) g ( n x ) d x + ∫ A ∞ f ( x ) g ( n x ) d x − 1 T ∫ 0 T g ( x ) d x ∫ a A f ( x ) d x − 1 T ∫ 0 T g ( x ) d x ∫ A ∞ f ( x ) d x ∣ = ∣ ∫ a A f ( x ) g ( n x ) d x − 1 T ∫ 0 T g ( x ) d x ∫ a A f ( x ) d x ∣ + M ∣ ∫ A ∞ f ( x ) d x ∣ + 1 T ∣ ∫ 0 T g ( x ) d x ∣ ∫ A ∞ ∣ f ( x ) ∣ d x → 0 \begin{split} &|\int_a^{\infty}f(x)g(nx)\mathrm{d}x-\frac{1}{T}\int_0^Tg(x)\mathrm{d}x\int_a^{\infty}f(x)\mathrm{d}x|\\ =&|\int_a^Af(x)g(nx)\mathrm{d}x+\int_A^{\infty}f(x)g(nx)\mathrm{d}x-\frac{1}{T}\int_0^Tg(x)\mathrm{d}x\int_a^Af(x)\mathrm{d}x-\frac{1}{T}\int_0^Tg(x)\mathrm{d}x\int_A^{\infty}f(x)\mathrm{d}x|\\ =&|\int_a^Af(x)g(nx)\mathrm{d}x-\frac{1}{T}\int_0^Tg(x)\mathrm{d}x\int_a^Af(x)\mathrm{d}x|+M|\int_A^{\infty}f(x)\mathrm{d}x|+\frac{1}{T}|\int_0^Tg(x)\mathrm{d}x|\int_A^{\infty}|f(x)|\mathrm{d}x\\ \to&0\\ \end{split} ==af(x)g(nx)dxT10Tg(x)dxaf(x)dxaAf(x)g(nx)dx+Af(x)g(nx)dxT10Tg(x)dxaAf(x)dxT10Tg(x)dxAf(x)dxaAf(x)g(nx)dxT10Tg(x)dxaAf(x)dx+MAf(x)dx+T10Tg(x)dxAf(x)dx0

其中第一项趋于零由常规积分的 Riemann引理保证,第二、三项趋于零由 f ( x ) f(x) f(x) 的绝对可积性保证

以下引理是Riemann引理的直接推论,是信号处理中重要的一个结论

Riemann-lebesgue引理
f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上可积,则有
lim ⁡ k → ∞ ∫ a b f ( x ) cos ⁡ k x d x = lim ⁡ k → ∞ ∫ a b f ( x ) sin ⁡ k x d x = 0 \lim\limits_{k\to\infty}\int_a^bf(x)\cos{kx}\mathrm{d}x=\lim\limits_{k\to\infty}\int_a^bf(x)\sin{kx}\mathrm{d}x=0 klimabf(x)coskxdx=klimabf(x)sinkxdx=0

该结论直观的意义是,若被积函数振荡过快,其积分为零

Riemann-Lebesgue引理

重述一遍结论
Riemann-lebesgue引理
f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上可积,则有
lim ⁡ k → ∞ ∫ a b f ( x ) cos ⁡ k x d x = lim ⁡ k → ∞ ∫ a b f ( x ) sin ⁡ k x d x = 0 \lim\limits_{k\to\infty}\int_a^bf(x)\cos{kx}\mathrm{d}x=\lim\limits_{k\to\infty}\int_a^bf(x)\sin{kx}\mathrm{d}x=0 klimabf(x)coskxdx=klimabf(x)sinkxdx=0

换一种思路证明Riemann-Lebesgue引理,不妨假设 f f f 还是可导的,那么由分部积分公式

∫ a b f ( x ) sin ⁡ k x d x = ∫ a b f ′ ( x ) cos ⁡ x n d x + f ( a ) n cos ⁡ ( n a ) − f ( b ) n cos ⁡ ( n b ) \int_a^bf(x)\sin{kx}\mathrm{d}x=\int_a^bf'(x)\frac{\cos{x}}{n}\mathrm{d}x+\frac{f(a)}{n}\cos{(na)}-\frac{f(b)}{n}\cos{(nb)} abf(x)sinkxdx=abf(x)ncosxdx+nf(a)cos(na)nf(b)cos(nb)

从而
∣ ∫ a b f ( x ) sin ⁡ k x d x ∣ ≤ 1 n ∫ a b ∣ f ′ ∣ d x |\int_a^bf(x)\sin{kx}\mathrm{d}x|\leq\frac{1}{n}\int_a^b|f'|\mathrm{d}x abf(x)sinkxdxn1abfdx

这即是说 ∫ a b f ( x ) sin ⁡ k x d x \int_a^bf(x)\sin{kx}\mathrm{d}x abf(x)sinkxdx 收敛于零,且收敛速度估计为 ∣ ∫ a b f ( x ) sin ⁡ k x d x ∣ = O ( 1 n ) |\int_a^bf(x)\sin{kx}\mathrm{d}x|=O(\frac{1}{n}) abf(x)sinkxdx=O(n1)

若进一步假设 f ∈ C k [ a , b ] f\in C^k[a,b] fCk[a,b] ,且 f f f k k k 阶导数始终在 a , b a,b a,b 附近为0,则不断使用分部积分公式可以得到
∣ ∫ a b f ( x ) sin ⁡ k x d x ∣ = O ( 1 n k ) |\int_a^bf(x)\sin{kx}\mathrm{d}x|=O(\frac{1}{n^k}) abf(x)sinkxdx=O(nk1)

再换一种思路证明 Riemann-Lebesgue引理,若 f f f 是连续函数,则用光滑函数(即一阶连续可导)逼近连续函数;若 f f f 是可积函数,则用简单函数逼近它;

结论
f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上连续,则有
lim ⁡ k → ∞ ∫ a b f ( x ) cos ⁡ k x d x = lim ⁡ k → ∞ ∫ a b f ( x ) sin ⁡ k x d x = 0 \lim\limits_{k\to\infty}\int_a^bf(x)\cos{kx}\mathrm{d}x=\lim\limits_{k\to\infty}\int_a^bf(x)\sin{kx}\mathrm{d}x=0 klimabf(x)coskxdx=klimabf(x)sinkxdx=0

证明
对任意 ε > 0 \varepsilon>0 ε>0,存在 N N N ,当 n ≥ N n\geq N nN 时,由 Weierstrass-Stone 定理,存在多项式 P ( x ) P(x) P(x) ,使得
sup ⁡ x ∈ [ a , b ] ∣ P ( x ) − f ( x ) ∣ < 1 2 ε b − a \sup\limits_{x\in[a,b]}|P(x)-f(x)|<\frac{1}{2}\frac{\varepsilon}{b-a} x[a,b]supP(x)f(x)<21baε

由分部积分公式容易得到当 n n n 充分大时
∣ ∫ a b P ( x ) sin ⁡ ( n x ) d x ∣ ≤ 1 n ( ∫ a b ∣ P ′ ∣ + 2 ) < ε 2 |\int_a^bP(x)\sin{(nx)}\mathrm{d}x|\leq \frac{1}{n}(\int_a^b|P'|+2)<\frac{\varepsilon}{2} abP(x)sin(nx)dxn1(abP+2)<2ε

从而
∣ ∫ a b f ( x ) sin ⁡ n x d x ∣ ≤ ∣ ∫ a b P ( x ) sin ⁡ n x d x ∣ + ∫ a b ∣ P ( x ) − f ( x ) ∣ ∣ sin ⁡ ( n x ) ∣ d x < ε 2 + ε 2 = ε |\int_a^bf(x)\sin{nx}\mathrm{d}x|\leq |\int_a^bP(x)\sin{nx}\mathrm{d}x|+\int_a^b|P(x)-f(x)||\sin{(nx)}|\mathrm{d}x<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon abf(x)sinnxdxabP(x)sinnxdx+abP(x)f(x)∣∣sin(nx)dx<2ε+2ε=ε

结论
f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上可积,则有
lim ⁡ k → ∞ ∫ a b f ( x ) cos ⁡ k x d x = lim ⁡ k → ∞ ∫ a b f ( x ) sin ⁡ k x d x = 0 \lim\limits_{k\to\infty}\int_a^bf(x)\cos{kx}\mathrm{d}x=\lim\limits_{k\to\infty}\int_a^bf(x)\sin{kx}\mathrm{d}x=0 klimabf(x)coskxdx=klimabf(x)sinkxdx=0

证明
存在阶梯函数 φ \varphi φ 使得 ∫ A b ∣ φ − f ∣ < ε \int_A^b|\varphi-f|<\varepsilon Abφf<ε

故有 ∣ ∫ a b f ( x ) sin ⁡ n x d x ∣ ≤ ∣ ∫ a b φ ( x ) sin ⁡ n x d x ∣ + ∫ a b ∣ f ( x ) − φ ( x ) ∣ ∣ sin ⁡ n x ∣ d x < ε 2 + ε 2 = ε |\int_a^bf(x)\sin{nx}\mathrm{d}x|\leq|\int_a^b\varphi(x)\sin{nx}\mathrm{d}x|+\int_a^b|f(x)-\varphi(x)||\sin{nx}|\mathrm{d}x<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon abf(x)sinnxdxabφ(x)sinnxdx+abf(x)φ(x)∣∣sinnxdx<2ε+2ε=ε

参考书:

  • 《数学分析》陈纪修 於崇华 金路
  • 《数学分析之课程讲义》清华大学数学系及丘成桐数学中心
  • 《数学分析习题课讲义》谢惠民 恽自求 易法槐 钱定边 著
  • 21
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值