数学系的数字信号处理:傅立叶级数

本篇文章适合个人复习翻阅,不建议新手入门使用

傅立叶(Fourier)级数

1. L 2 [ − π , π ] L^2[-\pi,\pi] L2[π,π] 上的正交函数系

(1) { 1 2 π , sin ⁡ x π , cos ⁡ x π , sin ⁡ 2 x π , cos ⁡ 2 x π , … …   } \{\dfrac{1}{\sqrt{2\pi}},\dfrac{\sin{x}}{\sqrt{\pi}},\dfrac{\cos{x}}{\sqrt{\pi}},\dfrac{\sin{2x}}{\sqrt{\pi}},\dfrac{\cos{2x}}{\sqrt{\pi}},\dots\dots\} {2π 1,π sinx,π cosx,π sin2x,π cos2x,……}

(2) { e i n x 2 π : n = 0 , ± 1 , ± 2 , …   } \{\dfrac{e^{inx}}{\sqrt{2\pi}}:n=0,\pm 1,\pm 2,\dots\} {2π einx:n=0,±1,±2,}

证明思路
由积化和差公式易证(1)

2. f ( x ) f(x) f(x) 的傅立叶级数(实形式)

2.1 [ − π , π ] [-\pi,\pi] [π,π] 上的傅立叶级数

f ( x ) = a 0 + ∑ k = 1 ∞ [ a k cos ⁡ k x + b k sin ⁡ k x ] f(x) =a_0+\sum\limits_{k=1}^{\infty}[a_k\cos{kx}+b_k\sin{kx}] f(x)=a0+k=1[akcoskx+bksinkx]其中
a 0 = 1 2 π ∫ − π π f ( x ) d x a_0=\dfrac{1}{2\pi}\int_{-\pi}^{\pi}f(x)\mathrm{d}x a0=2π1ππf(x)dx

a k = 1 π ∫ − π π f ( x ) cos ⁡ k x d x a_k=\dfrac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos{kx}\mathrm{d}x ak=π1ππf(x)coskxdx

b k = 1 π ∫ − π π f ( x ) sin ⁡ k x d x b_k=\dfrac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin{kx}\mathrm{d}x bk=π1ππf(x)sinkxdx

2.2 [ − a , a ] [-a,a] [a,a] 上的傅立叶级数

f ( x ) = a 0 + ∑ k = 1 ∞ [ a k cos ⁡ k π x a + b k sin ⁡ k π x a ] f(x)=a_0+\sum\limits_{k=1}^{\infty}[a_k\cos{\dfrac{k\pi x}{a}}+b_k\sin{\dfrac{k\pi x}{a}}] f(x)=a0+k=1[akcosax+bksinax]

其中
a 0 = 1 2 a ∫ − a a f ( x ) d x a_0=\dfrac{1}{2a}\int_{-a}^{a}f(x)\mathrm{d}x a0=2a1aaf(x)dx

a k = 1 a ∫ − a a f ( x ) cos ⁡ k π x a d x a_k=\dfrac{1}{a}\int_{-a}^{a}f(x)\cos{\dfrac{k\pi x}{a}}\mathrm{d}x ak=a1aaf(x)cosaxdx

b k = 1 a ∫ − a a f ( x ) sin ⁡ k π x a d x b_k=\dfrac{1}{a}\int_{-a}^{a}f(x)\sin{\dfrac{k\pi x}{a}}\mathrm{d}x bk=a1aaf(x)sinaxdx

2.3 半区间 [ 0 , a ] [0,a] [0,a] 上的傅立叶级数

展为余弦级数:
f ( x ) = a 0 + ∑ k = 1 ∞ a k cos ⁡ k π x a f(x)=a_0+\sum\limits_{k=1}^{\infty}a_k\cos{\dfrac{k\pi x}{a}} f(x)=a0+k=1akcosax其中
a 0 = 1 a ∫ 0 a f ( x ) d x a_0=\dfrac{1}{a}\int_{0}^{a}f(x)\mathrm{d}x a0=a10af(x)dx

a k = 2 a ∫ 0 a f ( x ) cos ⁡ k π x a d x a_k=\dfrac{2}{a}\int_{0}^{a}f(x)\cos{\dfrac{k\pi x}{a}}\mathrm{d}x ak=a20af(x)cosaxdx

展为正弦级数:
f ( x ) = ∑ k = 1 ∞ b k sin ⁡ k π x a f(x)=\sum\limits_{k=1}^{\infty}b_k\sin{\dfrac{k\pi x}{a}} f(x)=k=1bksinax其中
b k = 2 a ∫ 0 a f ( x ) sin ⁡ k π x a d x b_k=\dfrac{2}{a}\int_{0}^{a}f(x)\sin{\dfrac{k\pi x}{a}}\mathrm{d}x bk=a20af(x)sinaxdx

证明:
(1):对(1)中等式两端同乘 cos ⁡ n x ( n ≥ 0 ) \cos{nx} (n\geq 0) cosnx(n0),再作积分 ∫ − π π ⋅ d x \int_{-\pi}^{\pi}\cdot\mathrm{d}x ππdx,即得系数 a n ( n ≥ 0 ) a_n(n\geq 0) an(n0) b n b_n bn类似。

(2):即对(1)作变量代换

命题
f ( x ) f(x) f(x) 是以 2 π 2\pi 2π 为周期的函数,则其在任意长度为 2 π 2\pi 2π 的区间上的傅立叶级数都形如上面定理给出的(1)

证明:
引理:设F为周期为 2 π 2\pi 2π的函数,则
∀ c ∈ R , ∫ − π + c π + c F ( x ) d x = ∫ − π π F ( x ) d x \forall c\in\mathbb{R},\int_{-\pi+c}^{\pi+c}F(x)\mathrm{d}x=\int_{-\pi}^{\pi}F(x)\mathrm{d}x cR,π+cπ+cF(x)dx=ππF(x)dx

3. f ( x ) f(x) f(x) 的傅立叶级数(复形式)

3.1 [ − π , π ] [-\pi,\pi] [π,π] 上的傅立叶级数

f ( x ) = ∑ n = − ∞ ∞ α n e i n x f(x)=\sum\limits_{n=-\infty}^{\infty}\alpha_ne^{inx} f(x)=n=αneinx其中 α n = 1 2 π ∫ − π π f ( x ) e − i n x d x \alpha_n=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)e^{-inx}\mathrm{d}x αn=2π1ππf(x)einxdx

3.2 [ − a , a ] [-a,a] [a,a] 上的傅立叶级数

f ( x ) = ∑ n = − ∞ ∞ α n e i n x ⋅ π a f(x)=\sum\limits_{n=-\infty}^{\infty}\alpha_ne^{inx\cdot\frac{\pi}{a}} f(x)=n=αneinxaπ其中 α n = 1 2 a ∫ − a a f ( x ) ⋅ e − i n x ⋅ π a d x \alpha_n=\frac{1}{2a}\int_{-a}^af(x)\cdot e^{-inx\cdot\frac{\pi}{a}}\mathrm{d}x αn=2a1aaf(x)einxaπdx

3.3 傅立叶级数实、复形式的相互推导

n ≥ 1 n\geq 1 n1,容易验证 α 0 = a 0 , α n = 1 2 ( a n − i b n ) , α − n = 1 2 ( a n + i b n ) \alpha_0=a_0,\alpha_n=\frac{1}{2}(a_n-ib_n),\alpha_{-n}=\frac{1}{2}(a_n+ib_n) α0=a0,αn=21(anibn),αn=21(an+ibn),则
∑ − ∞ ∞ α n e i n x = α 0 + ∑ n = 1 ∞ α n e i n x + ∑ n = 1 ∞ α − n e − i n x = a 0 + ∑ n = 1 ∞ 1 2 ( a n − i b n ) ( cos ⁡ n x + i sin ⁡ n x ) + ∑ n = 1 ∞ 1 2 ( a n + i b n ) ( cos ⁡ n x − i sin ⁡ n x ) = a 0 + ∑ n = 1 ∞ [ a n cos ⁡ n x + b n sin ⁡ n x ] \begin{split} &\sum\limits_{-\infty}^{\infty}\alpha_ne^{inx}\\ =&\alpha_0+\sum\limits_{n=1}^{\infty}\alpha_ne^{inx}+\sum\limits_{n=1}^{\infty}\alpha_{-n}e^{-inx}\\ =&a_0+\sum\limits_{n=1}^{\infty}\frac{1}{2}(a_n-ib_n)(\cos{nx}+i\sin{nx})\\ &+\sum\limits_{n=1}^{\infty}\frac{1}{2}(a_n+ib_n)(\cos{nx}-i\sin{nx})\\ =&a_0+\sum\limits_{n=1}^{\infty}[a_n\cos{nx}+b_n\sin{nx}] \end{split} ===αneinxα0+n=1αneinx+n=1αneinxa0+n=121(anibn)(cosnx+isinnx)+n=121(an+ibn)(cosnxisinnx)a0+n=1[ancosnx+bnsinnx]

4. 傅立叶级数的收敛性

4.1 Riemann-Lebesgue引理

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上分段连续(即在有界闭区间上仅有有限个间断点),则
lim ⁡ k → ∞ ∫ a b f ( x ) cos ⁡ k x d x = lim ⁡ k → ∞ ∫ a b f ( x ) sin ⁡ k x d x = 0 \lim\limits_{k\to\infty}\int_a^bf(x)\cos{kx}\mathrm{d}x=\lim\limits_{k\to\infty}\int_a^bf(x)\sin{kx}\mathrm{d}x=0 klimabf(x)coskxdx=klimabf(x)sinkxdx=0

证明
利用分部积分公式,当 k → ∞ k\to\infty k
∫ a b f ( x ) cos ⁡ k x d x = sin ⁡ k b ⋅ f ( b ) − sin ⁡ k a ⋅ f ( a ) k − ∫ a b sin ⁡ k x k f ′ ( x ) d x → 0 \begin{split} &\int_a^bf(x)\cos{kx}\mathrm{d}x\\ =&\frac{\sin{kb}\cdot f(b)-\sin{ka}\cdot f(a)}{k}-\int_a^b\frac{\sin{kx}}{k}f'(x)\mathrm{d}x\\ &\to 0 \end{split} =abf(x)coskxdxksinkbf(b)sinkaf(a)abksinkxf(x)dx0

注:直观理解:即函数振荡过快会导致积分趋于0

4.2 点态收敛性

f ( x ) f(x) f(x) 是周期为 2 π 2\pi 2π 的连续函数,在 x x x 处有导数,则 f ( x ) f(x) f(x) [ − π , π ] [-\pi,\pi] [π,π] 上的傅立叶级数在 x x x 处收敛于 f ( x ) f(x) f(x)

证明

  1. 任取 u ∈ [ − π , π ] , u ≠ 0 u\in[-\pi,\pi],u\neq 0 u[π,π],u=0,由Euler公式及等比数列求和公式
    1 2 + cos ⁡ u + ⋯ + cos ⁡ N u = sin ⁡ ( N + 1 2 ) u 2 sin ⁡ u 2 \frac{1}{2}+\cos u+\cdots+\cos{Nu}=\frac{\sin{(N+\frac{1}{2})}u}{2\sin{\frac{u}{2}}} 21+cosu++cosNu=2sin2usin(N+21)u
  2. P N ( u ) = 1 2 π sin ⁡ ( N + 1 2 ) u 2 sin ⁡ u 2 P_N(u)=\frac{1}{2\pi}\frac{\sin{(N+\frac{1}{2})}u}{2\sin{\frac{u}{2}}} PN(u)=2π12sin2usin(N+21)u,容易发现 P N ( u ) P_N(u) PN(u) 2 π 2\pi 2π 为周期,且
    ∫ − π π P N ( u ) d u = 1 \int_{-\pi}^{\pi}P_N(u)\mathrm{d}u=1 ππPN(u)du=1
  3. f ( x ) f(x) f(x) [ − π . π ] [-\pi.\pi] [π.π] 的傅立叶级数的部分和为 S N ( x ) S_N(x) SN(x),则

S N ( x ) = 1 π ∫ − π π f ( t ) [ 1 2 + ∑ k = 1 N cos ⁡ k ( t − x ) ] d t = ∫ − π π f ( t ) 1 2 π sin ⁡ ( N + 1 2 ) ( t − x ) 2 sin ⁡ t − x 2 d t \begin{split} S_N(x)=&\frac{1}{\pi}\int_{-\pi}^{\pi}f(t)[\frac{1}{2}+\sum\limits_{k=1}^N\cos{k(t-x)}]\mathrm{d}t\\ =&\int_{-\pi}^{\pi}f(t)\frac{1}{2\pi}\frac{\sin{(N+\frac{1}{2})}(t-x)}{2\sin{\frac{t-x}{2}}}\mathrm{d}t\end{split} SN(x)==π1ππf(t)[21+k=1Ncosk(tx)]dtππf(t)2π12sin2txsin(N+21)(tx)dt

  1. 作代换 u = t − x u=t-x u=tx ,则
    S N ( x ) = ∫ − π − x π − x f ( u + x ) P N ( u ) d u = ∫ − π π f ( u + x ) P N ( u ) d u \begin{split} S_N(x)=&\int_{-\pi-x}^{\pi-x}f(u+x)P_N(u)\mathrm{d}u\\ =&\int_{-\pi}^{\pi}f(u+x)P_N(u)\mathrm{d}u \end{split} SN(x)==πxπxf(u+x)PN(u)duππf(u+x)PN(u)du

  2. f ( x ) = f ( x ) ∫ − π π P N ( u ) d u = ∫ − π π f ( x ) P N ( u ) d u \begin{split} f(x)=&f(x)\int_{-\pi}^{\pi}P_N(u)\mathrm{d}u\\ =&\int_{-\pi}^{\pi}f(x)P_N(u)\mathrm{d}u \end{split} f(x)==f(x)ππPN(u)duππf(x)PN(u)du

  3. S N ( x ) − f ( x ) = 1 2 π ∫ − π π f ( u + x ) − f ( u ) sin ⁡ u 2 sin ⁡ ( N + 1 2 ) u d u ≜ 1 2 π ∫ − π π g ( u ) sin ⁡ ( N + 1 2 ) u d u \begin{split} &S_N(x)-f(x)\\ =&\frac{1}{2\pi}\int_{-\pi}^{\pi}\frac{f(u+x)-f(u)}{\sin{\frac{u}{2}}}\sin{(N+\frac{1}{2})u} \mathrm{d}u\\ \triangleq &\frac{1}{2\pi}\int_{-\pi}^{\pi}g(u)\sin{(N+\frac{1}{2})u} \mathrm{d}u \end{split} =SN(x)f(x)2π1ππsin2uf(u+x)f(u)sin(N+21)udu2π1ππg(u)sin(N+21)udu

  4. 根据 Riemann-Lebesgue引理,只需说明 g ( u ) g(u) g(u) 是分段连续的,这只需 g ( u ) g(u) g(u) u = 0 u=0 u=0 处不发散即可
    g ( u ) = f ( u + x ) − f ( u ) u ⋅ u sin ⁡ u 2 → 2 f ′ ( x ) g(u)=\frac{f(u+x)-f(u)}{u}\cdot \frac{u}{\sin{\frac{u}{2}}}\to 2f'(x) g(u)=uf(u+x)f(u)sin2uu2f(x)

推论:
分段连续函数的傅立叶级数点态收敛于 f ( x + 0 ) + f ( x − 0 ) 2 \frac{f(x+0)+f(x-0)}{2} 2f(x+0)+f(x0)

4.3 一致收敛性

f ( x ) f(x) f(x) 2 π 2\pi 2π 为周期且分段光滑(即在有界闭区间上仅有有限个间断点且左右导数均存在),则 f ( x ) f(x) f(x) [ − π , π ] [-\pi,\pi] [π,π] 上的傅立叶级数一致收敛

证明:

  1. 由分部积分公式, a n = − a n ′ ′ n 2 , b n = − b n ′ ′ n 2 a_n=-\frac{a_n''}{n^2},b_n=-\frac{b_n''}{n^2} an=n2an′′,bn=n2bn′′

  2. ∑ k = 1 ∞ ∣ a k ∣ + ∣ b k ∣ = ∑ k = 1 ∞ ∣ a k ′ ′ ∣ + ∣ b k ′ ′ ∣ k 2 ≤ ∑ k = 1 ∞ 2 M k 2 \sum\limits_{k=1}^{\infty}|a_k|+|b_k|=\sum\limits_{k=1}^{\infty}\frac{|a_k''|+|b_k''|}{k^2}\leq \sum\limits_{k=1}^{\infty}\frac{2M}{k^2} k=1ak+bk=k=1k2ak′′+bk′′k=1k22M

∣ f ( x ) − S N ( x ) ∣ = ∣ ∑ k = N + 1 ∞ a k cos ⁡ k x + b k sin ⁡ k x ∣ ≤ ∑ k = N + 1 ∞ ∣ a k ∣ + ∣ b k ∣ → 0 ( N → ∞ ) \begin{split} &|f(x)-S_N(x)|\\ =&|\sum\limits_{k=N+1}^{\infty}a_k\cos{kx}+b_k\sin{kx}|\\ \leq &\sum\limits_{k=N+1}^{\infty}|a_k|+|b_k|\to 0 (N\to \infty) \end{split} =f(x)SN(x)k=N+1akcoskx+bksinkxk=N+1ak+bk0(N)

4.4 依 L 2 L^2 L2 范数收敛性

f ( x ) ∈ L 2 [ − π , π ] f(x)\in L^2[-\pi,\pi] f(x)L2[π,π],则 S N S_N SN L 2 L^2 L2 收敛于 f ( x ) f(x) f(x)

引理: L 2 [ − π , π ] L^2[-\pi,\pi] L2[π,π] 上的函数可由一个周期为 2 π 2\pi 2π 的光滑函数任意逼近(不加证明)

定理证明
由引理给出 f f f 的逼近 g g g ,则
∣ ∣ f − f N ∣ ∣ ≤ ∣ ∣ f − g N ∣ ∣ < ∣ ∣ f − g ∣ ∣ + ∣ ∣ g − g N ∣ ∣ < ε + ε = 2 ε \begin{split} &||f-f_N||\\ \leq &||f-g_N||\\ <&||f-g||+||g-g_N||\\ <&\varepsilon+\varepsilon=2\varepsilon \end{split} <<∣∣ffN∣∣∣∣fgN∣∣∣∣fg∣∣+∣∣ggN∣∣ε+ε=2ε

5. Paseval等式

f ∈ L 2 [ − π , π ] f\in L^2[-\pi,\pi] fL2[π,π],则
1 2 π ∣ ∣ f ∣ ∣ 2 = ∑ − ∞ ∞ ∣ α n ∣ 2 = ∣ a 0 ∣ 2 + 1 2 ∑ n = 1 ∞ ∣ a n ∣ 2 + ∣ b n ∣ 2 \frac{1}{2\pi}||f||^2=\sum\limits_{-\infty}^{\infty}|\alpha_n|^2=|a_0|^2+\frac{1}{2}\sum\limits_{n=1}^{\infty}|a_n|^2+|b_n|^2 2π1∣∣f2=αn2=a02+21n=1an2+bn2
更多地,若设 g ∈ L 2 [ − π , π ] g\in L^2[-\pi,\pi] gL2[π,π],则
< f , g > = 2 π ∑ − ∞ ∞ α n β n ‾ <f,g>=2\pi\sum\limits_{-\infty}^{\infty}\alpha_n\overline{\beta_n} <f,g>=2παnβn

证明思路

∣ < f , g > − < f n , g n > ∣ ≤ ∣ < f , g − g n > ∣ + ∣ < f − f n , g N > ∣ ≤ ∣ ∣ f ∣ ∣ ⋅ ∣ ∣ g − g N ∣ ∣ + ∣ ∣ g N ∣ ∣ ⋅ ∣ ∣ f − f N ∣ ∣ → 0 \begin{split} &|<f,g>-<f_n,g_n>|\\ \leq &|<f,g-g_n>|+|<f-f_n,g_N>|\\ \leq &||f||\cdot||g-g_N||+||g_N||\cdot||f-f_N||\to 0 \end{split} <f,g><fn,gn><f,ggn>+<ffn,gN>∣∣f∣∣∣∣ggN∣∣+∣∣gN∣∣∣∣ffN∣∣0

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值