土地利用/覆盖(LULC)信息在农业、城市规划、生态环境、气候研究等众多领域中具有极其重要的作用。传统获取方式往往需要下载大容量遥感影像并进行分类处理,但现在,借助 Google Earth Engine(GEE)与 Dynamic World 数据集,我们可以高效获取高分辨率、准实时的全球土地利用分类数据。
本文将详细介绍如何使用 GEE 提取指定区域 2024 年土地利用众数图像,并导出结果供本地分析使用。
📦 一、使用的数据集:Dynamic World
Dynamic World 是由 Google 与 World Resources Institute 联合推出的一个全球土地覆盖产品,基于 Sentinel-2 数据与深度学习算法生成,具有以下特点:
-
空间分辨率:10米
-
时间频率:每日更新
-
分类数量:9类地表类型(如林地、农田、水体、建设用地等)
-
数据时间范围:从 2020 年起持续更新
🧩二、目标任务
我们将以江西省赣州市中心城区为例,实现以下目标:
-
获取2024年整年土地利用数据(基于Dynamic World)
-
使用众数合成方式得到“主导地类”分布图
-
可视化渲染图像
-
导出 GeoTIFF 格式图像至 Google Drive
💻 三、完整代码(直接可用)
以下代码可直接复制粘贴到 GEE 代码编辑器中运行:
// =============================
// ✅ 1. 设置区域与时间
// =============================
var region = ee.Geometry.Rectangle([114.8, 25.7, 115.1, 26.1]); // 示例区域:赣州市
var start = ee.Date('2024-01-01');
var end = ee.Date('2024-12-31');
// =============================
// ✅ 2. 获取Dynamic World影像
// =============================
var dw = ee.ImageCollection('GOOGLE/DYNAMICWORLD/V1')
.filterBounds(region)
.filterDate(start, end)
.select('label');
// =============================
// ✅ 3. 合成2024年的主分类图(众数模式)
// =============================
var dwMode = dw.reduce(ee.Reducer.mode()).clip(region);
// =============================
// ✅ 4. 可视化参数
// =============================
var visParams = {
min: 0,
max: 8,
palette: [
'419bdf', // 水体
'397d49', // 林地
'88b053', // 草地
'7a87c6', // 湿地
'e49635', // 农田
'dfc35a', // 灌丛
'c4281b', // 建设用地
'a59b8f', // 裸地
'b39fe1' // 雪冰
]
};
Map.centerObject(region, 10);
Map.addLayer(dwMode, visParams, '2024 LULC Mode');
// =============================
// ✅ 5. 导出图像到Google Drive
// =============================
Export.image.toDrive({
image: dwMode,
description: 'LULC_2024_Mode',
folder: 'GEE_Exports',
fileNamePrefix: 'LULC_2024_Mode',
region: region,
scale: 10,
crs: 'EPSG:4326',
maxPixels: 1e13
});
🧠 四、输出说明
运行上述代码后,GEE 会将结果以 .tif
格式导出到你 Google Drive 中指定的文件夹。输出影像为 10 米分辨率,图像每个像素值对应下表中的编号:
编号 | 类别名称 |
---|---|
0 | 水体 Water |
1 | 林地 Trees |
2 | 草地 Grass |
3 | 湿地 Flooded vegetation |
4 | 农田 Crops |
5 | 灌丛 Shrub & scrub |
6 | 建设用地 Built |
7 | 裸地 Bare |
8 | 雪冰 Snow & ice |
🎯 五、应用场景
使用该方法获得的土地利用主分类图,可广泛用于:
-
土地整治前后土地利用变化对比
-
农业种植结构分析
-
城市扩张监测
-
土地利用碳储量估算
-
下游模型(如GWR、随机森林、MLP等)的输入因子
🖼 六、效果预览图
📷
🔚 七、总结
通过 Google Earth Engine 与 Dynamic World 数据集,我们可以高效、准确地获取最新的土地利用数据,避免传统影像分类的繁琐流程,极大提升科研与项目效率。如果你正在进行涉及土地利用的研究,这套流程将是你不可或缺的利器。