如何利用Google Earth Engine提取10m精度2024年土地利用数据 | 附完整代码与可视化指南

土地利用/覆盖(LULC)信息在农业、城市规划、生态环境、气候研究等众多领域中具有极其重要的作用。传统获取方式往往需要下载大容量遥感影像并进行分类处理,但现在,借助 Google Earth Engine(GEE)与 Dynamic World 数据集,我们可以高效获取高分辨率、准实时的全球土地利用分类数据。

本文将详细介绍如何使用 GEE 提取指定区域 2024 年土地利用众数图像,并导出结果供本地分析使用。

📦 一、使用的数据集:Dynamic World

Dynamic World 是由 Google 与 World Resources Institute 联合推出的一个全球土地覆盖产品,基于 Sentinel-2 数据与深度学习算法生成,具有以下特点:

  • 空间分辨率:10米

  • 时间频率:每日更新

  • 分类数量:9类地表类型(如林地、农田、水体、建设用地等)

  • 数据时间范围:从 2020 年起持续更新

🧩二、目标任务

我们将以江西省赣州市中心城区为例,实现以下目标:

  1. 获取2024年整年土地利用数据(基于Dynamic World)

  2. 使用众数合成方式得到“主导地类”分布图

  3. 可视化渲染图像

  4. 导出 GeoTIFF 格式图像至 Google Drive

💻 三、完整代码(直接可用)

以下代码可直接复制粘贴到 GEE 代码编辑器中运行:

// =============================
// ✅ 1. 设置区域与时间
// =============================
var region = ee.Geometry.Rectangle([114.8, 25.7, 115.1, 26.1]);  // 示例区域:赣州市
var start = ee.Date('2024-01-01');
var end = ee.Date('2024-12-31');

// =============================
// ✅ 2. 获取Dynamic World影像
// =============================
var dw = ee.ImageCollection('GOOGLE/DYNAMICWORLD/V1')
  .filterBounds(region)
  .filterDate(start, end)
  .select('label');

// =============================
// ✅ 3. 合成2024年的主分类图(众数模式)
// =============================
var dwMode = dw.reduce(ee.Reducer.mode()).clip(region);

// =============================
// ✅ 4. 可视化参数
// =============================
var visParams = {
  min: 0,
  max: 8,
  palette: [
    '419bdf',  // 水体
    '397d49',  // 林地
    '88b053',  // 草地
    '7a87c6',  // 湿地
    'e49635',  // 农田
    'dfc35a',  // 灌丛
    'c4281b',  // 建设用地
    'a59b8f',  // 裸地
    'b39fe1'   // 雪冰
  ]
};

Map.centerObject(region, 10);
Map.addLayer(dwMode, visParams, '2024 LULC Mode');

// =============================
// ✅ 5. 导出图像到Google Drive
// =============================
Export.image.toDrive({
  image: dwMode,
  description: 'LULC_2024_Mode',
  folder: 'GEE_Exports',
  fileNamePrefix: 'LULC_2024_Mode',
  region: region,
  scale: 10,
  crs: 'EPSG:4326',
  maxPixels: 1e13
});

🧠 四、输出说明

运行上述代码后,GEE 会将结果以 .tif 格式导出到你 Google Drive 中指定的文件夹。输出影像为 10 米分辨率,图像每个像素值对应下表中的编号:

编号类别名称
0水体 Water
1林地 Trees
2草地 Grass
3湿地 Flooded vegetation
4农田 Crops
5灌丛 Shrub & scrub
6建设用地 Built
7裸地 Bare
8雪冰 Snow & ice

 

🎯 五、应用场景

使用该方法获得的土地利用主分类图,可广泛用于:

  • 土地整治前后土地利用变化对比

  • 农业种植结构分析

  • 城市扩张监测

  • 土地利用碳储量估算

  • 下游模型(如GWR、随机森林、MLP等)的输入因子


🖼 六、效果预览图

📷 


🔚 七、总结

通过 Google Earth Engine 与 Dynamic World 数据集,我们可以高效、准确地获取最新的土地利用数据,避免传统影像分类的繁琐流程,极大提升科研与项目效率。如果你正在进行涉及土地利用的研究,这套流程将是你不可或缺的利器。

### 关于GEE土地利用数据的质量可用性 #### 数据质量评估 高质量的数据对于地理空间分析至关重要。ESRI提供的10米分辨率全球陆地覆盖数据自2020起被集成至GEE平台,该数据集具备高分辨率、开放性和准确性等特点[^2]。这意味着用户可以获得详尽的地表特征信息,有助于精确识别不同类型的用地情况。 然而,在实际应用过程中需要注意的是,并非所有地区都能达到理想的精度水平。由于卫星影像采集条件差异以及分类算法局限性的存在,某些复杂地形区域可能会影响最终成果的表现形式。因此建议使用者结合具体研究需求谨慎选用适合版本并进行必要的验证工作。 #### 数据可用性探讨 就可用性而言,通过GEE获取的土地利用数据具有显著优势: - **广泛覆盖范围**:不仅限于特定国家或大陆,而是面向整个地球表面提供了统一标准下的制图服务; - **便捷访问途径**:只需借助支持HTML5的现代浏览器即可在线操作,无需下载安装额外软件; - **高效处理能力**:依托云计算技术实现快速响应大规模计算请求的功能特性使得科研人员能够专注于数据分析而非基础设施建设方面的问题; - **社区资源共享机制**:鼓励开发者分享个人项目经验和技术心得从而形成良性循环生态体系促进共同进步发展。 尽管如此,考虑到部分敏感地带可能存在更新频率不足的情况,所以在开展涉及此类地区的专题研究前最好先确认最新状况以免造成误导。 ```javascript // 示例代码展示如何加载和可视化 ESRI 10 米土地覆盖数据 var dataset = ee.ImageCollection('ESA/WorldCover/v100'); Map.addLayer(dataset, {min: 10, max: 100}, 'Land Cover', true); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值