基础元件的非理想行为及电路建模

本文探讨了数字电路设计中电容和电感的非理想行为,通过等效电路模型分析了陶瓷电容和钽电容,以及高频电感的特性。通过实例数据对比,展示了简化模型在高频性能评估中的应用,尽管存在偏差但可满足设计评估需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

0 引言        

1 电容的等效电路

2 电容数据对比分析

3 电感的等效电路        

4 电感数据对比分析        

5 总结        


0 引言        

        数字电路设计中的典型元件-电容和电感,随着工作频率的提升,这些元件将表现出非理想行为,由于分布参数的存在,电容和电感会产生谐振,这些行为会对高频电子电路的性能产生负面影响,并最终导致信号、电源完整性以及EMC、EMI问题。本文将通过数学模型对元件的非理想行为进行深入的理解,并注重与实测数据的对比,用于说明建模方式的准确性。

1 电容的等效电路

        电容有很多种类型,以提高EMC性能为目的,典型的电容类型有陶瓷电容和钽电容,钽电容可以在小封装获取大电容值,而陶瓷电容的电容值要比钽电容小很多,但是它们都可以在高频保持较为理想的特性。 两种类型的电容具有相似的等效电路,都可以看作是电介质隔开的一对金属平行板,电介质的损耗(极化和交流漏电阻)表示为一个并联电阻R_{diel},这个值通常很大,近似等效为开路,金属平行板的电阻表示为R_{plate},对于小型封装的陶瓷电容,R_{plate}很小,另外,电容封装上的引线具有一定的电感及电容,分别表示为L_{lead}C_{lead},对于SMT封装而言,C_{lead}通常比理想电容C小很多,可以忽略不计,因此,等效电路可以演化为由CL_{lead}R_{s}组成,其中R_{s}称为串联等效电阻(ESR),本质上与R_{plate}意义相同。

2 电容数据对比分析

        以一款常用的0402封装的0.1μF陶瓷电容举例,如下图所示,从供应商手册中的测试数据可以获取谐振频点f_{0}为27.6MHz,数据表中没有直接给出ESR,选取谐振点处的R_{s}为0.023ohm,假设此时的C为0.1μF,与f_{0}一起带入谐振频率计算公式:

f_{0}=\frac{1}{2\pi \sqrt{L_{lead}C}}

        求解得到:L_{lead}=332.523pH。

        上述参数所构成的等效电路运算结果显示,除高频处由于ESL的影响有所偏差,阻抗曲线与供应商提供的测试数据基本保持一致。

3 电感的等效电路        

        将线圈绕成圆柱形形成电感的技术由来已久,随着技术的演进,电感结构上也发生了很多的变化,但是等效电路的建立还是可以参考圆柱形结构。线圈的绕制引入了导线的电阻R_{par}和导线间的电容C_{par},而层压形式虽然缩短了电感的长度,但也增加了层间电容,导致C_{par}增大,电感封装上的引线具有一定的电感及电容,分别表示为L_{lead}C_{lead},但由于电感本体的L值较大,L_{lead}通常可以忽略不计,与此类似,引线电容C_{lead}通常小于寄生电容C_{par},可以忽略,因此,等效电路可以演化为由R_{par}L串联,并与C_{par}并联组成。

4 电感数据对比分析        

        以一款常用的0603封装的0.1μH高频电感举例,从供应商手册中的测试数据可以获取谐振频点f_{0}为2.7472GHz,假设此时的L为0.1μH,带入谐振计算公式:

f_{0}=\frac{1}{2\pi \sqrt{LC_{par}}}

        可求得C_{par}为0.033597pF,另外已知R_{par}为0.68ohm,将这些数据带入等效电路中运算,与参考测试数据相比,等效电路在谐振峰值处存在一定的偏差。

        为了弥补这一偏差,需要对电路进行改进,引入并联的谐振阻抗峰值R_{f0},改进电路如下图所示:

        已知该电感的谐振峰值为51446.707ohm,带入运算后,数据的差异变得很小,作为等效评估是足够的了。

5 总结        

        通过简单的计算进行电路建模并使用合适的补偿方式进行数据拟合,简化的等效电路可以获取较高准确度,虽然不能与测试数据完全地匹配,但是已经足够为设计评估所使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只豌豆象

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值