文章引言写法

引言(Introduction)的定义

引言位于正文开头,紧随摘要之后,起到交代背景、直抒研究主题及研究目标的作用。撰写引言时,研究者可以先综述所在领域的既有发现,再过渡到目前研究尚存的不足或空白之处,最后说明本研究将如何填补这些空白。建议研究者以时间顺序综述现有研究,并注意合规引用。

好的引言可以奠定全文的基调,并阐明研究的重要性,令论文的价值一目了然。在撰写引言时,研究者需注意做到简明扼要,避免提及与主旨不相干或冗余重复的内容。

为使引言清晰易读,研究者也可以使用分段方式呈现。以下示例可供参考:

图片

(该引言与前文中的分段式摘要选自同一篇文章2)

了解了摘要和引言的区别后,以下这份写作建议请收好:

摘要

  • 写作逻辑:介绍研究主题→说明选择该主题的原由→提出研究假设→展示研究结果。

  • 令读者对研究有整体了解即可,不宜赘述过多细节。

  • 收尾有力,激发读者阅读兴趣。

  • 核查数据准确性。如果摘要中提及的数据会与正文内容有出入,则会影响研究的可信度。

  • 遵循目标期刊的格式要求。各家期刊的规定不尽相同,如部分期刊要求特定类别的论文使用分段摘要。

引言

  • 简要概述研究主题、指出文章试图填补的研究空白。最好能够援引数据或当下趋势作为论据。

  • 说明为何选择该研究方向,清晰地陈述目标。

  • 为研究提供背景信息,通过综述其他相关研究,引出研究假设。

  • 预先说明后文将展开的核心概念和研究方法,确保读者在深度阅读前了解语境。4

  • 保持行文简洁,避免堆叠过量信息,分散读者注意力。

对引言写法的个人总结:

第一段:研究背景

第二段:本文研究问题

第三段:现有研究情况,总结不足

第四段:本文为弥补以往不足,做了什么,怎么做的,弥补了什么

第五段:研究贡献

### 如何撰写 YOLO 目标检测论文的引言部分 撰写一篇关于 YOLO 的目标检测论文时,引言部分应清晰地介绍研究背景、现有技术的状态以及所提出的改进或贡献的意义。以下是针对 YOLO 论文引言撰写的最佳实践: #### 背景与动机 目标检测作为计算机视觉领域的重要分支,在许多实际应用场景中发挥着核心作用[^1]。近年来,随着深度学习的发展,基于卷积神经网络的目标检测算法取得了显著进步。其中,YOLO(You Only Look Once)因其高效性和实时性成为最受欢迎的方法之一[^2]。 #### 技术现状与发展 YOLO 系列模型经历了多个版本的迭代升级,从最初的 YOLOv1 到最新的变体如 DAMO-YOLO 和 Hyper-YOLO,每一代都在速度和精度上实现了不同程度的提升[^3]。这些进展主要得益于新型骨干网结构的设计、特征融合策略的优化以及更有效的训练机制引入。 #### 存在的问题与挑战 尽管如此,当前 YOLO 方法仍面临一些局限性,例如对于小物体检测效果不佳、多尺度预测能力有限等问题。这些问题限制了其在某些复杂场景下的表现,因此亟需进一步探索解决方案以提高整体性能。 #### 提出的研究方向或创新点 本文旨在通过提出一种新框架/方法来克服上述提到的技术瓶颈。具体而言,我们将重点放在以下几个方面:(此处可以根据具体内容补充细节) - 设计更加轻量化的主干网络; - 改进特征金字塔结构以增强跨层信息交互; - 开发新颖的数据增广手段应对标注偏差影响; 最终期望达成既保持原有快速推理特性的同时又能获得更高准确率的结果。 ```python # 示例代码片段展示可能用于验证假设的部分实现逻辑 def evaluate_model_performance(model, dataset): metrics = model.evaluate(dataset) return { 'precision': metrics['tp'] / (metrics['tp'] + metrics['fp']), 'recall' : metrics['tp'] / (metrics['tp'] + metrics['fn']) } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值