-
调节分析(Moderation Analysis): 调节分析的目的是研究一个变量(调节变量)如何影响两个变量之间的关系强度或方向。例如,调节分析被用于探讨不同融资路径(如债务融资和股权融资)如何调节数字化转型与企业成长表现之间的关系。具体来说,融资约束和债务融资成本被视为调节变量,来观察它们如何影响数字化转型对企业成长的促进作用。
-
异质性分析(Heterogeneity Analysis): 异质性分析关注的是不同组别或类别之间的差异,目的是研究某个变量对不同群体的影响是否存在显著差异。例如,用异质性分析用来考察企业数字化转型在不同所有制性质、行业和区域商业环境中的效果差异。例如,私营企业和国有企业、技术密集型行业和非技术密集型行业的数字化转型对企业成长表现的影响可能存在差异,这就是异质性分析的目标。
简单来说,调节分析探讨的是某个因素如何影响变量之间的关系,而异质性分析则是比较不同群体间的效果差异。
具体而言,多数文章通过以下几个维度对样本进行分类:
-
企业所有制:将样本分为国有企业、外资企业和私营企业,比较这些不同所有制企业的数字化转型对企业成长表现的影响。
-
区域商业环境:根据地区的商业环境好坏,将样本分为“较好商业环境组”和“较差商业环境组”,以考察不同商业环境下数字化转型的效果差异。
-
行业差异:将样本按是否属于高技术行业进行分组,分析数字化转型在高技术行业和非高技术行业中的影响差异。
通过这些分类,文章对不同组别内进行了回归分析,目的是探讨各组之间是否存在显著差异,从而揭示异质性来源。