特征选择 - 逐步回归 (stepwise regression)

在学习统计学的时候,留意到有一个算法叫做逐步回归 (stepwise regression)。简单来说,就是数据集中的特征的重要性不同,这方法可以把它们排序,找出每一个特征对预测结果的重要性。

以下代码将会逐步说明从得到数据集开始,应怎么做才可以找到特征重要性的排序。(这次我们假设做一个二分类的任务)

1. 导入需要用到的工具

import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import LabelEncoder
from sklearn import linear_model
from sklearn.metrics import roc_auc_score

import warnings
warnings.filterwarnings('ignore')

2. 取得数据集, 并且把一些特征已经很明显是不要的特征先行drop掉

df = pd.read_csv('df.csv')
df = df.drop(['fea1', 'fea3', 'fea4'], axis=1)

3. 为数据分类 (包括是CATEGORY还是NUMERIC),这里只分类x值, 不需要把目标值也分类

CATEGORY = ['fea5', 'fea6', 'fea7']
NUMERIC = ['fea2', 'fea8', 'fea9', 'fea10']</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值