深度学习介绍

文章讲述了通过随机初始化参数、数据样本训练以及不断优化来实现任务自动化的机器学习过程。领域专家、数据科学家和AI专家在这一过程中各自扮演关键角色,确保模型的精度和性能。以深度学习为例,强调了团队合作在提升应用性能中的重要性。
摘要由CSDN通过智能技术生成

实现很多任务的自动化并不再屈从于人类所能考虑到的逻辑!!!

训练过程:
1. 从一个随机初始化参数的模型开始
2. 数据样本
3. 调整参数(使模型在这些样本中表现得更好)
4. 重复第2及3步骤,直到模型得到好结果

 * 预测与训练需要不停地提出模型精度及性能

[例:用户点撃广告]

在一次机器学习应用需要3类人:
- 领域专家:对应用有深入的了解
- 数据科学家:将原始数据转为机器学习可用的数据,然后去训练模型
- AI专家:关注不同的点去进行提升

--

学习参考:李沐 - 动手学深度学习 v2 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值