机器学习
ianc023
只是想记录学习的笔记, 要是有错欢迎指正, 谢谢各位小伙伴 :)
展开
-
Softmax用DL实现 - 代码
通过DL框架更容易地实现softmax原创 2023-04-04 00:11:59 · 76 阅读 · 0 评论 -
回归 vs 分类
回归和分类问题的简介原创 2023-04-03 21:49:06 · 67 阅读 · 0 评论 -
线性回归 - 代码 (使用深度学习框架实现)
使用深度学习框架去实现线性回归原创 2023-04-03 17:03:25 · 109 阅读 · 0 评论 -
线性回归 - 简介
线性回归是对n维输入的加权 (), 外加偏差 (- 使用平方损失来衡量预测值和真实值的差异- 线性回归(有显示解的model比较简单)- 线性回归可以看做是(最简单的神经网络)- 线性回归是唯一一个的model (其他都没有)原创 2023-03-29 23:18:50 · 88 阅读 · 0 评论 -
特征选择 - 逐步回归 (stepwise regression)
数据集中的特征的重要性不同,可以用逐步回归 (stepwise regression)方法可以把它们排序,找出每一个特征对预测结果的重要性。原创 2023-04-03 15:37:17 · 1282 阅读 · 0 评论 -
线性回归 - 代码 (不使用框架实现)
这部分是以实现线性回归为主, 当中是代码, 将会不使用框架实现原创 2023-03-30 01:27:17 · 69 阅读 · 0 评论 -
线性回归 - 基础优化方法
本笔记有关梯度下降 (Gradient descent), 小批量随机随机梯度下降 [这是deep learning默认的求解算法]原创 2023-03-29 23:52:32 · 138 阅读 · 0 评论