哈希的概念
顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素
时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即
O( l o g 2 N log_2 N log2N),搜索的效率取决于搜索过程中元素的比较次数。
理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。
如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立
映射的关系,那么在查找时通过该函数可以很快找到该元素.。
如上图即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称
为哈希表(Hash Table)(或者称散列表)。
哈希冲突
在上图,倘若再来一个16,17,14等类似的值经过哈希函数得出的值两个值一模一样会与表中冲突,改现象成为哈希冲突或哈希碰撞。那么讲如何处理呢?
闭散列的模拟实现
闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有
空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置
呢?
线性探测
插入与扩容
如上图,44模10之后会与4模10的位置冲突,那么将其往下一个位置移动直到一个空位置中。
模拟实现:
我们需要一个状态表示,以表示这个空间是否存在值,是否为空,注意的是我们删除值时,并不能真正的删除这个空间,而是给他一个被删除的状态表示来达到效果
enum State
{
EMPTY,//空
EXIST,//存在值
DELETE//被删除的值
};
//扩容问题
if (_n * 10 / _table.size() >= 7)
{
HashTable<K, V, Hash> newHT(_table.size() * 2);
for (auto& e : _table)
{
if (e._state == EXIST)
{
newHT.Insert(e._kv);
}
_table.swap(newHT._table);
}
}
//插入问题
Hash hs;
size_t hashi = hs(kv.first) % _table.size();
while (_table[hashi]._state == EXIST)
{
hashi++;
hashi %= _table.size();
}
_table[hashi]._kv = kv;
_table[hashi]._state = EXIST;
_n++;
return true;
查找
找到空位置则停止,因为在插入线性探测时,会按照顺从此位置依次往后,找到空则插入。相对于查找倘若找到空,则表示后面肯定没有值。
HashDate<K, V>* Find(const K& key)
{
Hash hs;
size_t hashi = hs(key) % _table.size();
while (_table[hashi]._state != EMPTY)
{
if (key == _table[hashi]._kv.first
&& _table[hashi]._state == EXIST)
{
return &_table[hashi];
}
++hashi;
hashi %= _table.size();
}
//找到空位置,则停止
return nullptr;
}
删除
只需要将要删除的状态设置为DELETE即可,并不是真正的删除此空间!
bool Erase(const K& key)
{
HashDate<K, V>* ret = Find(key);
if (ret)
{
ret->_state = DELETE;
return true;
}
else {
return false;
}
}
开散列哈希桶的模拟实现
哈希桶
如上图经过取模得到的值如果相同,那么则链接在他的后面。
插入
找到表中对应的值,进行链接,如果对应的值相同,则往其后继续链接。
bool Insert(const T& data)
{
Hash hs;
if (_n == _table.size())
{
vector<Node*> newTables(_tables.size() * 2, nullptr);
for (int i = 0; i < _table.size(); ++i)
{
Node cur = _table[i];
while (cur)
{
Node next = cur->_next;
size_t hashi = hs(data) & newTables.size();
cur->_next = newTables[hashi];
newTables[hashi] = cur;
cur = next;
}
_table[i] = nullptr;
}
_table.swap(newTables);
}
size_t hashi = hs(data) % _table.size();
Node* newnode = new Node(data);
newnode->_next = _table[hashi];
_table[hashi] = newnode;
++_n;
return true;
}
查找
找到对应的值,进行遍历他所链接的值找到并返回。
Node* Find(const K& data)
{
Hash hs;
size_t hashi = hs(data) % _table.size();
Node* cur = _table[hashi];
while (cur)
{
if (cur->_data == data)
{
return cur;
}
cur = cur->_next;
}
return nullptr;
}
销毁
这里可以将其链接的值销毁,不许更改状态。
注意的是是否为位置的头结点。
bool Erase(const K& data)
{
Hash hs;
size_t hashi = hs(data) % _table.size();
Node* prev = nullptr;
Node* cur = _table[hashi];
while (cur)
{
if (cur->_data == data)
{
if (prev)
{
prev->_next = cur->_next;
}
else
{
_table[hashi] = cur->_next;
}
delete cur;
--_n;
return true;
}
prev = cur;
cur = cur->_next;
}
return false;
}