💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
无限小偶极子辐射的研究是电磁学中的一个经典课题,特别是在无线通信、雷达技术以及天线设计等领域具有重要应用价值。无限小偶极天线,作为一个理想化的模型,指的是长度远小于工作波长的电流振荡源。其电场传播特性的深入分析,不仅能加深对电磁波基本理论的理解,还能为设计高效、定向的天线系统提供理论依据。
基本理论
无限小偶极子的辐射场可以通过麦克斯韦方程组和相应的边界条件求解获得。其中,最常用的表达方式是通过矢量势函数来描述。根据经典的电磁理论,无限小偶极子在远区(辐射区)产生的电场可以使用下面的公式来表示:
𝐸(𝑟)=𝜔2𝜇04𝜋𝑝×𝑟^𝑟3E(r)=4πω2μ0r3p×r^
其中,𝐸(𝑟)E(r) 是在空间点 𝑟r 处的电场强度,𝜔ω 是偶极子的角频率,𝜇0μ0 是真空的磁导率,𝑝p 是偶极矩,𝑟^r^ 是从偶极子指向观察点的单位向量,𝑟r 是偶极子到观察点的距离。这个公式表明,电场强度与偶极矩的方向垂直,随距离的立方减小,且与频率的平方成正比,体现出辐射场的基本特征。
传播特性分析
-
方向性:无限小偶极子的辐射场显示出强烈的定向性,其最大辐射方向沿着与偶极矩垂直的平面,形成了所谓的“双瓣”图案。这是因为在垂直于偶极子方向上的电场分量相互抵消,而在横向形成辐射峰值。
-
频率依赖性:辐射场的强度随工作频率的平方增加,意味着在更高的频率下,相同偶极矩产生的辐射会更强。这直接影响到天线设计中的频率选择与匹配问题。
-
极化特性:偶极子辐射的电场矢量与偶极子自身取向一致,决定了辐射波的极化性质。因此,选择和控制偶极子的方向是实现特定极化需求的关键。
-
近场与远场转换:在无限小偶极子模型中,近场与远场的分界通常定义为距离 𝑟=2𝜆𝜋r=π2λ(其中 𝜆λ 是波长),这一区域内的电场特性与远场显著不同,包含更多的感应和静态成分,对天线设计和环境影响的考量尤为重要。
应用与展望
通过对无限小偶极子辐射特性的深入研究,不仅可以优化现有天线设计,提高其辐射效率和方向性,还能够促进新型无线通信系统的发展,如5G/6G技术、物联网传感器网络等,这些系统对天线的小型化、集成化以及在特定频段的高效工作提出了更高要求。此外,研究还包括利用偶极子阵列来实现更为复杂的辐射模式,进一步拓宽了其在雷达、卫星通信和定向能量传输等领域的应用潜力。
📚2 运行结果
部分代码:
% time domain
dt=1/20;
tmax=4;
f=1;
Etmax=0;
for t=0:dt:tmax
Ext=real(Ex.*exp(j*2*pi*t));
Ezt=real(Ez.*exp(j*2*pi*t));
Et= sqrt(abs(Ext.^2)+abs(Ezt.^2));
Etmax=max(max(Et(:)),Etmax);
%Et=Et/Etmax;
P_db=20*log10(abs(Et)/abs(Etmax));
%P_db=20*log10(abs(Et));
imagesc(xx,zz,Et,[10 70]);
%imagesc(xx,zz,P_db);
colorbar
xlabel('x');
ylabel('z');
pause (0.1)
end % end for tt
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]王轶珏,贾兴宁,朴大志.基于负μ传输线的电偶极子和环天线设计[J].南京信息工程大学学报, 2019, 011(001):47-52.
[2]王鹏.电磁场中的电大尺寸辐射和散射问题研究[D].西安电子科技大学[2024-07-03].DOI:10.7666/d.y1618192.
[3]丁保军.微带阵列天线的电磁散射研究[D].中国航天第二研究院, 航天科工集团第二研究院,2004.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取