💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
三变量联合分布函数copula
1.利用AIC BIC确定单变量最优拟合函数
2.利用AIC确定三变量联合最优copula函数
3.计算联合概率
为了使用AIC(Akaike信息准则)和BIC(贝叶斯信息准则)确定单变量的最优拟合函数,并利用AIC确定三变量的最优copula函数,以下是一个详细的步骤指南:
步骤1:单变量最优拟合函数
1. **数据预处理**
- 收集并清洗三变量数据集。
- 对每个变量单独进行描述性统计分析,检查其分布类型。
2. **拟合不同的单变量分布**
- 选择多个候选分布(如正态分布、对数正态分布、伽玛分布、指数分布等)。
- 对每个变量分别拟合这些候选分布。
3. **计算AIC和BIC**
- 计算每个候选分布的AIC和BIC值。
- 选择AIC和BIC值最小的分布作为最优单变量拟合分布。
步骤2:三变量联合分布的copula选择
1. **构建copula模型**
- 选择多个候选的copula函数(如Gaussian copula、t copula、Clayton copula、Gumbel copula等)。
- 使用前面步骤确定的最优单变量分布进行边缘分布的标准化处理。
2. **拟合copula模型**
- 对三变量数据进行copula模型的拟合。
- 计算每个copula模型的AIC值。
3. **选择最优copula**
- 选择AIC值最小的copula作为最优三变量联合分布模型。
在确定单变量最优拟合函数时,可以使用AIC(Akaike Information Criterion)或者BIC(Bayesian Information Criterion)来进行比较。这两种准则都是用来评估模型的拟合程度和复杂性,通过在不同模型之间进行比较来选择最佳模型。
对于三变量联合分布函数copula的选择,可以利用AIC来确定最优的copula函数。首先需要拟合各个边缘分布,然后通过copula函数将它们联系起来。在确定copula函数时,可以使用不同的copula家族(如Gaussian copula、t copula等)来进行比较,然后选择AIC值最小的copula函数作为最优模型。
在确定了最优的copula函数之后,就可以计算联合概率。通过联合分布函数copula,可以根据各个边缘分布以及copula函数来确定联合概率。具体计算方法可以根据所选的copula函数来进行相应的计算,以得到三个变量的联合概率。
在使用AIC(Akaike Information Criterion)和BIC(Bayesian Information Criterion)确定最优模型时,无论是单变量分布还是多变量Copula的选择,我们都是通过比较不同模型下的信息准则值来实现的。以下是该过程的简要指南,具体针对您的要求——确定单变量最优边际分布、三变量联合最优Copula函数,以及最终计算联合概率。
1. 单变量边际分布的确定
- 数据准备: 首先,确保你有每个变量的数据集。
- 分布假设: 对于每个变量,提出一系列可能的边际分布假设,比如正态分布、伽马分布、对数正态分布等。
- 参数估计与AIC/BIC计算: 对于每个分布假设,使用数据估计其参数,并计算相应的AIC或BIC值。AIC和BIC公式分别为:[AIC = 2k - 2\ln(L)] 和 [BIC = k\ln(n) - 2\ln(L)],其中𝑘k是参数数量,𝐿L是最似然函数值,𝑛n是样本大小。AIC倾向于选择更复杂的模型,而BIC则倾向于惩罚复杂度更高的模型。
- 选择最佳分布: 对于每个变量,选择AIC或BIC值最小的分布作为最优边际分布。
2. 三变量联合Copula函数的确定
- Copula选择与参数估计: 假设边际分布已经确定,接下来为三变量选择一系列Copula函数,如Gaussian Copula、t-Copula、Clayton Copula等。对于每种Copula,估计其参数并计算相应的联合分布函数。
- 计算AIC: 类似于单变量分布,为每个Copula模型计算AIC或BIC值。这里需要注意,因为Copula函数涉及多变量,计算AIC或BIC时要考虑所有参数的总和。
- 确定最优Copula: 选择三变量联合分布下AIC或BIC值最小的Copula作为最优模型。
3. 计算联合概率
- 生成均匀随机数: 首先,利用均匀分布生成对应于三变量的随机数。
- Copula反变换: 将这些均匀随机数通过选定的最优Copula的反变换函数转换成对应于三变量边际分布的概率值。
- 计算联合概率: 利用转换后的概率值和边际分布的累积分布函数(CDF),计算出三变量在特定点或区间上的联合概率。具体来说,如果边际CDFs为 𝐹1,𝐹2,𝐹3F1,F2,F3,而Copula反变换给出的联合概率为 𝐶(𝑢1,𝑢2,𝑢3)C(u1,u2,u3),那么三变量在点 (𝑥1,𝑥2,𝑥3)(x1,x2,x3) 的联合概率可以通过 𝐶(𝐹1(𝑥1),𝐹2(𝑥2),𝐹3(𝑥3))C(F1(x1),F2(x2),F3(x3)) 计算得出。
通过以上步骤,你可以系统地确定单变量的最优边际分布、三变量的最优联合Copula函数,并进而计算出所需的各种联合概率,用于进一步的分析或决策支持。
📚2 运行结果
部分代码:
%% 削减后的场景三维图
subplot(1,3,1)
bar3(P_wt')
l2 = xlabel('t/h');
set(l2, 'Fontname', 'Times New Roman', 'FontSize', 20)
ylabel('场景编号');
zlabel('风电出力');
subplot(1,3,2)
bar3(P_pv')
l2 = xlabel('t/h');
set(l2, 'Fontname', 'Times New Roman', 'FontSize', 20)
ylabel('场景编号');
zlabel('光伏出力');
subplot(1,3,3)
bar3(P_sum')
l2 = xlabel('t/h');
set(l2, 'Fontname', 'Times New Roman', 'FontSize', 20)
ylabel('场景编号');
zlabel('负荷');
%% 各个场景的概率
figure(3)
bar(p)
%ylim([0, 0.30]);
xlabel('场景编号');
ylabel('概率');
set(gca, 'FontSize', 20)
no = 1;
figure(4)
[ss,gg]=meshgrid(1:n_reduction,1:24);
plot3(ss,gg,P_wt, 'linewidth', 2);
title(['考虑相关性生成的风电出力', num2str(n_reduction), '个场景'])
xlabel('场景'); ylabel('时刻');zlabel('风电出力值');
set(gca, 'FontSize', 20)
set(gca,'LineWidth',2);
figure(5)
[ss,gg]=meshgrid(1:n_reduction,1:24);
plot3(ss,gg,P_pv, 'linewidth', 2);
title(['考虑相关性生成的光伏出力', num2str(n_reduction), '个场景'])
xlabel('场景'); ylabel('时刻');zlabel('光伏出力值');
set(gca, 'FontSize', 20)
set(gca,'LineWidth',2);
figure(6)
[ss,gg]=meshgrid(1:n_reduction,1:24);
plot3(ss,gg,P_sum, 'linewidth', 2);
title(['考虑相关性生成的负荷', num2str(n_reduction), '个场景'])
xlabel('场景'); ylabel('时刻');zlabel('负荷值');
set(gca,'FontSize', 20)
set(gca,'LineWidth',2);
figure(7)
subplot(1,3,1)
for i=1:10
hold on
h=cdfplot(P_wt(:,i));
set(h,'LineStyle', '-', 'LineWidth',2)
end
title('');
grid off;
%h1=legend({'1','2','3','4','5','6','7','8','9','10'},'FontSize',16);
%xlabel('Value','FontSize',16,'fontname','Times New Roman');
%legend('Location', 'Best');
%set(h1, 'Box', 'off');
ylabel('Cumulative probability','FontSize',16,'fontname','Times New Roman');
set(gca,'fontname','Times New Roman','FontWeight','bold','FontSize',20);
set(gca,'LineWidth',1.5);
subplot(1,3,2)
for i=1:n_reduction
hold on
h=cdfplot(P_pv(:,i));
set(h,'LineStyle', '-', 'LineWidth',2)
end
title('');
grid off;
%h1=legend({'1','2','3','4','5','6','7','8','9','10'},'FontSize',16);
%xlabel('Value','FontSize',16,'fontname','Times New Roman');
%legend('Location', 'Best');
%set(h1, 'Box', 'off');
%ylabel('Cumulative probability','FontSize',16,'fontname','Times New Roman');
set(gca,'fontname','Times New Roman','FontWeight','bold','FontSize',20);
set(gca,'LineWidth',1.5);
subplot(1,3,3)
for i=1:10
hold on
h=cdfplot(P_sum(:,i));
set(h,'LineStyle', '-', 'LineWidth',2)
end
title('');
grid off;
h1=legend({'1','2','3','4','5','6','7','8','9','10'},'FontSize',16);
%xlabel('Value','FontSize',16,'fontname','Times New Roman');
legend('Location', 'Best');
set(h1, 'Box', 'off');
%ylabel('Cumulative probability','FontSize',16,'fontname','Times New Roman');
set(gca,'fontname','Times New Roman','FontWeight','bold','FontSize',20);
set(gca,'LineWidth',1.5);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]高远(Ayantobo,Olusola Olaitan).干旱指标和Copula函数在干旱事件多变量频率分析中的应用[D].西北农林科技大学,2018.
[2]赵继超,袁越,傅质馨,等.基于Copula理论的风光互补发电系统可靠性评估[J].电力自动化设备, 2013, 33(001):124-129.DOI:10.3969/j.issn.1006-6047.2013.01.024.
[3]段偲默,苗世洪,霍雪松,等.基于动态Copula的风光联合出力建模及动态相关性分析[J].电力系统保护与控制, 2019, 47(5):8.DOI:10.7667/PSPC180149.
[4]付婷婷,边俐争,李嫚,等.基于Copula理论的风光互补配网经济运行联合配网重构优化[J].可再生能源, 2023, 41(1):122-128.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取