【一维量子谐振子的概率分布】计算并绘制一维量子和经典谐振子的波函数和概率分布(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一维量子谐振子的概率分布研究

一、引言

二、理论基础

1. 量子谐振子的波函数

2. 经典谐振子的概率分布

三、计算方法

四、Python代码免费分享

五、结果分析

六、结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

一维量子谐振子的概率分布研究

一、引言

一维量子谐振子是量子力学中的一个基本模型,用于描述在一维空间中受到线性回复力作用的粒子。与经典谐振子不同,量子谐振子的能量和位置分布是量子化的,且由波函数描述。本文档旨在通过计算和绘制一维量子谐振子的波函数及其对应的概率分布,并与经典谐振子的概率分布进行比较。

二、理论基础

1. 量子谐振子的波函数

一维量子谐振子的波函数可以通过求解薛定谔方程得到。对于基态(n=0)和激发态(n>0),波函数分别为:

psin​(x)=(πℏmω​)1/42nn!​1​Hn​(ℏmω​​x)exp(−2ℏmωx2​)

其中,Hn​(x) 是厄米多项式(Hermite polynomials),m 是质量,ω 是角频率,ℏ 是普朗克常数除以2π。

2. 经典谐振子的概率分布

经典谐振子的位置分布通常描述为高斯分布,但需要注意的是,经典谐振子没有严格的“波函数”概念,这里的高斯分布仅用于与量子谐振子的基态进行比较。

三、计算方法

  1. 定义参数:设定质量m、角频率ω和普朗克常数ℏ的值。
  2. 计算波函数:对于选定的量子数n,使用厄米多项式计算波函数ψn​(x)。
  3. 计算概率分布:利用波函数计算概率密度ρn​(x)=∣ψn​(x)∣2。
  4. 绘制图形:使用Python的matplotlib库绘制波函数和概率分布的图形。

四、Python代码免费分享

python复制代码

import numpy as np
import matplotlib.pyplot as plt
from scipy.special import hermite
# 参数设置
m = 1.0 # 质量
omega = 1.0 # 角频率
hbar = 1.0545718e-34 # 普朗克常数除以2π
x = np.linspace(-5, 5, 400) # 位置坐标
# 辅助函数:计算归一化因子和波函数
def psi_n(n, x):
alpha = np.sqrt(m * omega / hbar)
norm_factor = (m * omega / (np.pi * hbar)) ** 0.25 / np.sqrt(2 ** n * factorial(n))
hermite_poly = hermite(n)(alpha * x)
gaussian = np.exp(-alpha ** 2 * x ** 2 / 2)
return norm_factor * hermite_poly * gaussian
# 计算并绘制基态和第一激发态的波函数和概率分布
plt.figure(figsize=(12, 8))
# 基态
psi_0 = psi_n(0, x)
rho_0 = np.abs(psi_0) ** 2
plt.subplot(2, 2, 1)
plt.plot(x, psi_0, label='Wave Function (n=0)')
plt.title('Wave Function of Ground State')
plt.xlabel('x')
plt.ylabel('ψ(x)')
plt.legend()
plt.subplot(2, 2, 2)
plt.plot(x, rho_0, label='Probability Density (n=0)')
plt.title('Probability Density of Ground State')
plt.xlabel('x')
plt.ylabel('ρ(x)')
plt.legend()
# 第一激发态
psi_1 = psi_n(1, x)
rho_1 = np.abs(psi_1) ** 2
plt.subplot(2, 2, 3)
plt.plot(x, psi_1, label='Wave Function (n=1)')
plt.title('Wave Function of First Excited State')
plt.xlabel('x')
plt.ylabel('ψ(x)')
plt.legend()
plt.subplot(2, 2, 4)
plt.plot(x, rho_1, label='Probability Density (n=1)')
plt.title('Probability Density of First Excited State')
plt.xlabel('x')
plt.ylabel('ρ(x)')
plt.legend()
plt.tight_layout()
plt.show()

五、结果分析

  • 基态:波函数是一个中心对称的高斯函数,概率密度也呈现高斯分布,表示粒子在平衡位置附近最有可能被找到。
  • 第一激发态:波函数具有一个节点,概率密度在节点处为零,表示粒子在该位置出现的概率为零。与基态相比,激发态的概率分布更加分散。

六、结论

通过计算和绘制一维量子谐振子的波函数和概率分布,我们可以直观地看到量子谐振子与经典谐振子在位置分布上的显著差异。量子谐振子的概率分布是量子化的,由波函数决定,而经典谐振子的位置分布则通常描述为高斯分布。这种差异体现了量子力学的独特性和复杂性。

📚2 运行结果

部分代码:

function wave_func_plot(PHI_x,i,n,classical_phi,An_c)
u=PHI_x{i}(:,1);
v=classical_phi{i}(:,1);
phi=PHI_x{i}(:,2);
classical_PHI=classical_phi{i}(:,2);

Ax_p=[min(u) max(u) 1.2*min(phi) 1.2*max(phi)];
Ax_2=[min(u) max(u) -0.2*max(phi.^2) 1.2*max(phi.^2)];

subplot(length(n),2,2*i-1)
plot(u,phi,'b','linewidth',1.5);
hold on;
plot(Ax_p(1:2),[0,0],'k--','linewidth',1);
hold on;
plot([0,0],Ax_p(3:4),'k--','linewidth',1);
axis(Ax_p)
xlabel({'$x$'},'Interpreter','latex');
ylabel({['$\phi_{',num2str(i-1),'}(x)$']},'Interpreter','latex');
legend({['$E=(',num2str(i-1),'+\frac{1}{2})\hbar\omega_{0}$']},'Interpreter','latex');

subplot(length(n),2,2*i)
plot(u,(phi).^2,'b','linewidth',1.5);
hold on;
plot(v,classical_PHI,'r--','linewidth',1.5);
hold on;
plot(-[An_c(i),An_c(i)],[0,Ax_2(4)],'r--','linewidth',1.5);
hold on;
plot([An_c(i),An_c(i)],[0,Ax_2(4)],'r--','linewidth',1.5);
hold on;
plot(Ax_2(1:2),[0,0],'k--','linewidth',1);
hold on;
plot([0,0],Ax_2(3:4),'k--','linewidth',1);
axis(Ax_2)
xlabel({'$x$'},'Interpreter','latex');
ylabel({['$\mid\phi_{',num2str(i-1),'}(x)\mid^{2}$']},'Interpreter','latex');
legend({['$E=(',num2str(i-1),'+\frac{1}{2})\hbar\omega_{0}$'],'$classical\quad distribution$'},'Interpreter','latex');
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]王国文.由简谐振子波函数计算类经典位置概率密度[J].光子学报, 1998, 27(5):4.DOI:10.1088/0256-307X/15/12/010.

[2]王国文.由简谐振子波函数计算类经典位置概率密度[J].光子学报, 1998.

[3]王鹏,黄焱,安俊秀,等.多尺度量子谐振子算法在组合优化问题中的性能分析[J].电子科技大学学报, 2016, 45(3):6.DOI:10.3969/j.issn.1001-0548.2016.02.027.

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值