【多变量输入单步预测】基于哈里斯鹰优化算法(HHO)优化CNN-BiLSTM-Attention的风电功率预测研究(Matlab代码实现)

           💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

【多变量输入单步预测】基于哈里斯鹰优化算法(HHO)优化CNN-BiLSTM-Attention的风电功率预测研究

一、研究背景与意义

二、相关技术介绍

三、研究内容与方法

四、研究结果与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

【多变量输入单步预测】基于哈里斯鹰优化算法(HHO)优化CNN-BiLSTM-Attention的风电功率预测研究

一、研究背景与意义

风能作为一种清洁、可再生的能源,在全球能源结构转型中占据重要地位。然而,风电功率的间歇性和波动性给电力系统的稳定运行带来了巨大挑战。准确预测风电功率对于提高电网调度效率、降低运营成本和保障能源安全具有重要意义。传统的风电功率预测方法往往难以全面捕捉风电功率时间序列数据中的复杂特征和非线性关系,因此,探索新的预测方法以提升预测精度和稳定性显得尤为重要。

二、相关技术介绍
  1. 哈里斯鹰优化算法(HHO)
    • 定义:HHO是一种基于自然启发的元启发式优化算法,由Heidari等人于2019年提出。该算法模拟了哈里斯鹰在捕食过程中的合作行为和狩猎风格,通过迭代搜索来优化模型参数。
    • 特点:HHO算法具有需调参数少、原理简单易实现、局部搜索能力强等优点,在数值和工程优化等领域得到了广泛应用。
  2. 卷积神经网络(CNN)
    • 定义:CNN是一种具有层次结构的神经网络,擅长提取图像和时间序列数据中的特征。
    • 作用:在风电功率预测中,CNN能够提取风速、风向、温度等多变量输入数据中的空间特征,为后续预测提供重要信息。
  3. 双向长短时记忆网络(BiLSTM)
    • 定义:BiLSTM是RNN的一种变体,能够同时处理输入序列的正向和反向信息。
    • 作用:在风电功率预测中,BiLSTM能够学习风速时间序列中的双向长时依赖关系,提高预测的准确性。
  4. 注意力机制(Attention)
    • 定义:Attention机制赋予模型在处理输入序列时可以选择性地关注某些部分的能力。
    • 作用:在风电功率预测中,Attention机制能够识别出对风电功率预测影响较大的气象特征,如强风、风向突变等,从而进一步提高预测精度。
三、研究内容与方法
  1. 数据预处理
    • 收集风电场的气象数据和历史风电功率数据,包括风速、风向、温度等多变量输入数据。
    • 对数据进行清洗、缺失值处理、异常值处理等预处理工作,确保数据的完整性和准确性。
  2. 模型构建
    • 构建基于CNN-BiLSTM-Attention的风电功率预测模型,其中CNN用于提取气象数据的时间特征,BiLSTM用于学习时间序列数据中的长期依赖关系,并考虑未来信息的预测,Attention机制用于突出重要特征信息。
  3. 参数优化
    • 利用HHO算法对CNN-BiLSTM-Attention模型的参数进行优化。在HHO算法中,哈里斯鹰的位置被当作为候选解,迭代的最佳候选解为猎物。通过探索阶段、探索与开发转换阶段和开发阶段三个阶段的迭代搜索,找到最优的模型参数组合。
  4. 模型训练与评估
    • 使用训练集对模型进行训练,并通过测试集评估模型的预测性能。评估指标可以包括均方根误差(RMSE)、平均绝对误差(MAE)、均方误差(MSE)等。
    • 同时,将HHO-CNN-BiLSTM-Attention模型的预测结果与其他预测方法(如传统统计模型、物理模型、未优化的深度学习模型等)进行对比分析,以验证其优越性。
四、研究结果与展望

实验结果表明,基于HHO优化CNN-BiLSTM-Attention的风电功率预测模型在预测精度和稳定性方面均优于传统方法。该模型结合了CNN、BiLSTM和Attention机制的优势,能够有效地提取特征、捕捉长期依赖关系和聚焦关键特征,并通过HHO算法优化模型参数,以实现更高的预测精度。

未来研究可以进一步探索其他优化算法和深度学习模型在风电功率预测中的应用,以及如何将多种预测方法进行有效融合,以进一步提高预测性能。同时,还可以考虑将预测结果应用于电网调度、风电场运维等实际场景中,实现预测与决策的一体化。

📚2 运行结果

采用前10个样本的所有特征,去预测下一个样本的发电功率。

部分代码:


layers0 = [ ...
    % 输入特征
    sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
    % CNN特征提取
    convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
    batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
    reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
      % 池化层
    maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
    % 展开层
    sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复
    %平滑层
    flattenLayer('name','flatten')
    
    bilstmLayer(25,'Outputmode','last','name','hidden1') 
    selfAttentionLayer(1,2)          %创建一个单头,2个键和查询通道的自注意力层  
    dropoutLayer(0.1,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入

    fullyConnectedLayer(1,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %
    regressionLayer('Name','output')    ];

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]许亮,任圆圆,李俊芳.基于NGO-CNN-BiLSTM神经网络的动态质子交换膜燃料电池剩余使用寿命预测[J].汽车工程师, 2024(003):000.

[2]王彦快,孟佳东,张玉,等.基于GADF与2D CNN-改进SVM的道岔故障诊断方法研究[J].铁道科学与工程学报, 2024, 21(7).

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011, 35(12):20-26.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

MATLAB中使用LSTM模型进行多变量单步预测的步骤如下: 1. 数据准备:将多个变量的时间序列数据整理成适合LSTM模型输入的格式。通常情况下,数据应该是一个二维数组,其中行表示时间步,列表示变量。确保数据集包含足够数量的样本以及适当的标签。 2. 数据预处理:对数据进行标准化或归一化处理,以便在输入到LSTM之前将其缩放到一个合适的范围内。这可以通过MATLAB的标准函数或自定义函数进行实现。 3. 构建LSTM模型:在MATLAB中,可以使用深度学习工具箱来构建LSTM模型。指定模型的架构,例如输入和输出的维度,隐藏层的大小,激活函数等,并使用适当的优化算法进行训练。 4. 模型训练:使用准备好的数据集对构建好的LSTM模型进行训练。通过迭代优化算法来调整模型的权重和偏差,使其能够在训练数据上学习到相关模式和趋势。 5. 模型预测:使用模型对测试数据进行预测。将测试数据输入到训练好的LSTM模型中,通过模型的前向传播计算出预测值。 6. 结果评估:使用合适的评估指标来评估模型的预测性能,例如均方根误差(RMSE)或平均绝对百分比误差(MAPE)。根据评估结果对模型进行调整和改进。 7. 可视化结果:使用MATLAB的绘图工具,将训练和预测结果可视化展示,以便更直观地观察模型在不同变量上的预测效果。 这是一个基本的步骤框架,在实际应用中可能还需要进行更多细节的调整和优化,以使模型更加准确和可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值