# TODO 问题: x.chunk这是个啥函数
x.chunk(chunk_size, dim)
是 PyTorch 中的一个函数,它的作用是将输入张量 x
沿着指定的维度 dim
分割成多个小块(chunks),每个块包含 chunk_size
个连续的切片。返回的结果是一个由分割后的块组成的元组。
具体来说:
chunk_size
是每个块包含的切片数量。dim
是要进行分割的维度索引。
这个函数对于并行处理数据的不同部分非常有用,特别是在需要对数据的不同部分应用不同操作时。
在 CascadedGroupAttention
类的 forward
方法中:
feats_in = x.chunk(len(self.qkvs), dim=1)
这行代码的作用是将输入特征 x
沿着通道维度(dim=1
)分割成若干块,块的数量等于注意力头的数量(len(self.qkvs)
)。这样,每个块 feats_in
将被送入一个对应的注意力头进行处理。这种分割机制允许模型并行处理多头注意力机制,每个头处理特征的一部分。
例如,如果 x
的形状是 [B, C, H, W]
,其中 C
是通道数,且 len(self.qkvs)
是 4,那么 x.chunk(len(self.qkvs), dim=1)
将把特征 x
分割成 4 个部分,每个部分的形状是 [B, C/4, H, W]
。然后,每个部分将被送入一个不同的注意力头进行处理。
在多头注意力中,这种分割操作是常见的,它允许模型在不同的表示子空间中并行地捕获信息,增强了模型处理信息的能力。
沿着通道划分